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What is synchronization

σύν: syn = the same, common χρóνoς: chronos = time

Synchronization: Adjustment of rhythms of oscillating objects due to an

interaction
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Periodic oscillators

Synchronization by external force

Mutual synchronization of two oscillators

Synchronization in oscillatory media

Populations of coupled oscillators

Synchronization by common noise

Chaotic oscillators

Complete/identical synchronization

Phase synchronization

Generalized, master-slave, replica, . . .
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Historical introduction

Christiaan Huygens (1629-

1695) first observed a syn-

chronization of two pendu-

lum clocks
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He described:

“. . . It is quite worths noting that when we suspended two clocks so construc-
ted from two hooks imbedded in the same wooden beam, the motions of each
pendulum in opposite swings were so much in agreement that they never re-
ceded the least bit from each other and the sound of each was always heard
simultaneously. Further, if this agreement was disturbed by some interference,
it reestablished itself in a short time. For a long time I was amazed at this un-
expected result, but after a careful examination finally found that the cause of
this is due to the motion of the beam, even though this is hardly perceptible.”
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Lord Rayleigh described synchronization in acoustical systems:

“When two organ-pipes of the same pitch

stand side by side, complications ensue

which not unfrequently give trouble in prac-

tice. In extreme cases the pipes may almost

reduce one another to silence. Even when

the mutual influence is more moderate, it

may still go so far as to cause the pipes to

speak in absolute unison, in spite of inevi-

table small differences.”
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W. H. Eccles and J. H. Vincent applied for a British Patent confirming

their discovery of the synchronization property of a triode generator

Edward Appleton and Balthasar van der Pol extended the experiments

of Eccles and Vincent and made the first step in the theoretical study of

this effect (1922-1927)
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Jean-Jacques Dortous de Mairan reported in 1729 on his experiments

with the haricot bean and found a circadian rhythm (24-hours-rhythm):

motion of leaves continues even without variations of the illuminance

Engelbert Kaempfer wrote after his voyage to Siam in 1680:

“The glowworms . . . represent another shew, which settle on so-

me Trees, like a fiery cloud, with this surprising circumstance, that

a whole swarm of these insects, having taken possession of one

Tree, and spread themselves over its branches, sometimes hide

their Light all at once, and a moment after make it appear again

with the utmost regularity and exactness . . .”.
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Self-sustained oscillators

- generate periodic oscillations without periodic forces

- are dissipative nonlinear systems described by autonomous ODEs

- possess a limit cycle in the phase space
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Laser, periodic chemical reactions, predator-pray system, violine, ...

positive feedback loop
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Autonomous oscillator

- amplitude (form) of oscillations is fixed and stable

- PHASE of oscillations is free due to the time-shift invariance

amplitude
phase

A
��������������
��������������
��������������
��������������

0 2πθ

θ̇ = ω0 (Lyapunov exp. 0)

Ȧ = −γ(A−A0) (Lyapunov exp. −γ)

A

θ
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Forced oscillator

With small periodic external force (e.g. ∼ εsinωt):

only the phase θ is affected

dθ
dt

= ω0 + εG(θ,ψ)
dψ
dt

= ω

ψ is the phase of the external force, G(·, ·) is 2π-periodic

If ω0 ≈ ω then the phase difference ϕ = θ(t)−ψ(t) is slow

⇒ perform averaging by keeping only slow terms (e.g. ∼ sin(θ−ψ))

dϕ
dt

= Δω+ εsinϕ

Parameters in the Adler equation:
Δω = ω0−ω detuning

ε forcing strength
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Solutions of the Adler equation

dϕ
dt

= Δω+ εsinϕ

Fixed point for |Δω| < ε:

Frequency entrainment Ω = 〈θ̇〉 = ω
Phase locking ϕ = θ−ψ = const

Periodic orbit for |Δω| > ε: an asynchronous quasiperiodic motion

ϕ ϕ

|Δω| < ε |Δω| > ε
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Phase dynamics as a motion of an overdamped particle in an inclined

potential

dϕ
dt

= −dU(ϕ)
dϕ

U(ϕ) = −Δω ·ϕ+ εcosϕ

|Δω| < ε |Δω| > ε

Allows one to understand what happens in presence of noise:

no perfect locking but phase slips due to excitation over the barrier

13



Synchronization region = Arnold tongue

ωω0

ε

Δ ω

synchronization
region

ΔΩ

Unusual situation: synchronization occurs for very small force ε → 0,

but cannot be obtain with a (linear) perturbation method:

the perturbation theory is singular due to a degeneracy

(vanishing Lyapunov exponent)
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More generally: synchronization of

higher order is possible, whith a re-

lation Ω
ω = m

n
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2
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Mathematical description: reduce the system on a torus

dφ
dt

= ω0 + εG(φ,ψ)
dψ
dt

= ν

to a circle map

φn+1 = φn +ν+ εg(φn)
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φn+1 = φn +ν+ εg(φn)

Rotation number = average number of rotations pro iteration

ρ = lim
T→∞

1
2π

φT −φ0
T

• ρ = p
q rational: stable and unstable periodic orbits

• ρ irrational: quasiperiodic dense filling of the circle

For the continuous-time system: ρ = 〈φ̇〉
〈ψ̇〉 = ratio of the frequencies
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The simplest ways to observe synchronization:

Lissajous figure

Ω/ω = 1/1 quasiperiodicity Ω/ω = 1/2

force
x

Stroboscopic observation:

Plot phase at each period of forcing

synchronyquasiperiodicity
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Example: circadian rhythm

asleep

Constant
conditions

6 12 18 24 6 122418
1

5

10

15

hours

Light - dark

awake

The “Jet-Lag” results from the phase shift of the force – a new entrain-

ment takes some time
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Example: radio-controlled clocks

Atomic clocks at the German institute radio-controlled clock

of standards (PTB) in Braunschweig

⇒
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Mutual synchronization

Two non-coupled self-sustained oscillators:

dθ1
dt

= ω1
dθ2
dt

= ω2

Two weakly coupled oscillators:

dθ1
dt

= ω1 + εG1(θ1,θ2)
dθ2
dt

= ω2 + εG2(θ1,θ2)

For ω1 ≈ ω2 the phase difference ϕ = θ1−θ2 is slow

⇒ averaging leads to the Adler equation

dϕ
dt

= Δω+ εsinϕ

Parameters:
Δω = ω1−ω2 detuning

ε coupling strength
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Interaction of two periodic oscillators may be attractive ore repulsive: one

observes in phase or out of phase synchronization, correspondingly
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Example: classical experiments by Appleton
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Huygens pendulum clocks: see Bennett, Schatz, Rockwood and Wie-

senfeld, Proc. R. Soc. Lond. A (2002)

Organ pipes: see Abel, Bergweiler and Gerhard-Multhaupt, J. Acoust.

Soc. Am. (2006)

22



Synchronization of Josephson junctions

Josephson junction (= pendulum) is a rotator, has a zero Lyapunov ex-

ponent

Voltage = h̄
2e〈θ̇〉 measures the frequency
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Phase of a chaotic oscillator

Rössler attractor:

ẋ = −y− z

ẏ = x+0.15y

ż = 0.4+ z(x−8.5)
−10 0 10

−10

0

10

x
y

phase should correspond to the zero Lyapunov exponent!
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naive definition of the phase: θ = arctan(y/x)

basing on the Poincaré map:

θ = 2π
t − tn

tn+1− tn
+2πn tn+1 ≤ t < tn

x

y

θ
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For the topologically simple attractors all definitions are good

Lorenz attractor:

ẋ = 10(y− x)

ẏ = 28x− y− xz

ż = −8/3z+ xy
0 10 20 30

0
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(x2 + y2)1/2
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Phase dynamics in a chaotic oscillator

A model phase equation: dθ
dt = ω0 +F(A)

(first return time to the surface of section depends on the coordinate on

the surface)

A: chaotic ⇒ phase diffusion ⇒
broad spectrum

〈(θ(t)−θ(0)−ω0t)2〉 ∝ Dpt

Dp measures coherence of chaos
0 200 400 600 800

−1

0

1

2

time

(θ
−

ω
0t

)/
2π
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dθ
dt

= ω0 +F(A)

F(A) is like effective noise ⇒

Synchronization of chaotic oscillators ≈
≈ synchronization of noisy periodic oscillators ⇒

phase synchronization can be observed while the “amplitudes” remain

chaotic
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Synchronization of a chaotic oscillator by external force

If the phase is well-defined ⇒ Ω = 〈dθ
dt 〉 is easy to calculate

(e.g. Ω = 2π limt→∞ Nt/t, N is a number of maxima)

Forced

Rössler oscillator:

ẋ = −y− z+E cos(ωt)

ẏ = x+ay

ż = 0.4+ z(x−8.5) 0.9
0.95

1
1.05

1.1
1.15 0

0.2

0.4

0.6

0.8

-0.1

0

0.1

0.2

Eω

Ω−ω

phase is locked, amplitude is chaotic
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Stroboscopic observation

Autonomous chaotic oscillator: phases are distributed from 0 to 2π.

Under periodic forcing: if the phase is locked, then the distribution has

a sharp peak near θ = ωt + const.
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15

y

−15 −5 5 15
x

synchronized asynchronous
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Phase synchronization of chaotic gas discharge by

periodic pacing
Tacos et al, Phys. Rev. Lett. 85, 2929 (2000)

Experimental setup:

FIG. 2. Schematic representation of our experimental setup.
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Phase plane projections in non-synchronized and synchronized cases
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Synchronization region:
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Electrochemical chaotic oscillator
Kiss and Hudson, Phys. Rev. E 64, 046215 (2001)
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The synchronized oscillator remains chaotic:

35



Frequency difference as a function of driving frequency for different am-

plitudes of forcing:

Δ ω

synchronization
region

ΔΩ
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Synchronization region:

ωω0

ε
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Unified description of regular, noisy, and chaotic

oscillators

oscillators

autonomous

chaotic

forced

noisy

oscillators

periodic
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Ensembles of globally (all-to-all) couples oscillators

• Physics: arrays of Josephson junctions,

multimode lasers,...

• Biology and neuroscience: cardiac

pacemaker cells, population of fireflies,

neuronal ensembles,...

• Social behavior: applause in a large au-

dience, dance,...

Mutual coupling adjusts phases of indvidual systems, which start to keep

pace with each other

Synchronization appears as

a nonequilibrium order-disorder transition
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A macroscopic example: Millenium Bridge
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Experiment with Millenium Bridge
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Coupled neurons

Synchronisation in neuronal ensembles is believed to be the reason for

emergence of pathological rhythms in the Parkinson disease and in the

Epilepsy
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Watching synchrony

Watching sinchronous blinking of fireflies has boomed into an industry at

Kuala Selangor firefly park (Malaysia), see www.fireflypark.com
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Kuramoto model: coupled phase oscillators

Phase oscillators with all-to-all coupling (like Adler equation)

φ̇k = ωk + ε
1
N

N

∑
j=1

sin(φ j−φk) = ωk + εK sin(Θ−φk)

System can be written as a mean-field coupling with the mean field

(complex order parameter)

KeiΘ =
1
N ∑

k
eiφk

The natural frequencies are distributed

around some mean frequency ω0

≈ finite temperature ωω0

g(ω)
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Synchronisation transition

K

small ε: no synchronization,

phases are distributed uniformly,

mean field = 0

large ε: synchronization, distri-

bution of phases is non-uniform,

mean field 
= 0
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Theory of transition

Similar to the mean-field theory of ferromagnetic transition:

a self-consistent equation for the mean field

KeiΘ =
Z 2π

0
n(φ)eiφ dφ = Kε

Z π/2

−π/2
g(Kεsinφ)cosφ eiφ dφ

εεc

K

Critical coupling εc ∼ width of distribution g(ω) ∼ “temperature”
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Experiment

Experimental example: synchronization transition

in ensemble of 64 chaotic electrochemical oscillators

Kiss, Zhai, and Hudson, Science, 2002

Finite size of the ensem-

ble yields fluctuations of the

mean field ∼ 1
N
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Identical oscillators: zero temperature

All frequencies are equal, ε > 0, additional phase shift β in coupling

φ̇k = ω+ ε
1
N

N

∑
j=1

sin(φ j−φk−β) = ω+ εK sin(Θ−φk−β)

Attraction: −π
2 < β < π

2 =⇒
Synchronization, all phases identical φ1 = . . . = φN = Θ,

maximal order parameter K = 1

Repulsion: −π < β < −π
2 and π

2 < β < π =⇒
Asynchrony, phases distributed uniformely,

order parameter vanishes K = 0
48



Linear vs nonlinear coupling I

• Synchronization of a periodic autonomous oscillator is a nonlinear

phenomenon

• it occurs already for infinitely small forcing

• because the unperturbed system is singular (zero Lyapunov expo-

nent)

In the Kuramoto model “linearity” with respect to forcing is assumed

ẋ = F(x)+ ε1f1(t)+ ε2f2(t)+ · · ·
φ̇ = ω+ ε1q1(φ,t)+ ε2q2(φ, t)+ · · ·
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Linear vs nonlinear coupling II

Strong forcing leads to “nonlinear” dependence on the forcing amplitude

ẋ = F(x)+ εf(t)
φ̇ = ω+ εq(1)(φ,t)+ ε2q(2)(φ,t)+ · · ·

Nonlineraity of forcing manifests itself in the deformation/skeweness of

the Arnold tongue and in the amplitude depnedence of the phase shift

forcing frequencyfo
rc

in
g

am
pl

itu
de

ε

linear nonlinear

50



Linear vs nonlinear coupling III

Small each-to-each coupling ⇐⇒ coupling via linear mean field

1 N2 3

Σ
X

Y

linear
unit

Strong each-to-each coupling ⇐⇒ coupling via nonlinear mean field

1 N2 3

Σ
X

Y

nonlinear
unit
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Nonlinear coupling: a minimal solvable model

We take the Kuramoto model and assume

nonlinear dependence of coupling strength R and phase shift β
on the order parameter K

φ̇k = ω+R(εK)εK sin(Θ−φk +β(εK)) KeiΘ =
1
N ∑

k
eiφk

For R = const and β = const the Kuramoto model at zero temperature

is restored
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Desynchronization transition: critical coupling
φ̇k = ω+R(εK)εK sin(Θ−φk +β(εK))

Synchronous solution φk = Θ and K = 1
is stable if −π/2 < β(1,ε) < π/2
=⇒ critical coupling is determined by β(1,εq) = ±π/2
Transition from attraction to repulsion at a critical coupling strength

Beyond this transition partial synchronization

with 0 < K < 1 is observed

The mean field has frequency Ω = Θ̇ 
= ωosc = 〈φ̇〉

This field does not entrain the oscillators

=⇒ quasiperiodic regimes are observed
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Equations for the phase difference

dφk
dt

= ω+R(K,ε)K sin(Θ−φk +β(K,ε))

dΘ
dt

= Ω

we obtain for ψk = φk−Θ

dψk
dt

= ω−Ω+R(K,ε)K sin(β(K,ε)−ψk)

• following Kuramoto: we consider N → ∞ and drop the indices

• from the definition KeiΘ = 〈eiφ〉
=⇒ self-consistency condition K = 〈eiψ〉 =

πR
−π

eiψρ(ψ)dψ

54



Self-consistency condition

• complex equation K =
πR

−π
eiψρ(ψ)dψ for determination of K and Ω

• probability distribution ρ(ψ) ∼ |ψ̇|−1 can be explicitely obtained after

normalization

• self-consistent equation yelds

β(K,ε) = ±π/2 Ω = ω±R(K,ε)(1+K2)/2

• with account of this, integration of equation for ψ̇ yelds

ωosc = ω±RK2
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Self-organized quasiperiodicity

• frequencies Ω and ωosc depend on ε in a smooth way

=⇒ generally we observe a quasiperiodicity

• recall the equation for critical coupling β(1,εq) = ±π/2

and compare with just obtained β(K,ε) = ±π/2

• attracting coupling for small mean field

repulsing coupling for large mean field

=⇒ the system sets on exactly on the stabilty border, i.e. in a

self-organized critical state
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Simulation

• non-uniform distribution of oscillator

phases, here for ε− εq = 0.2

• different velocities of oscillators and of

the mean field

Re(Ak)

Im
(A

k)
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Example: Josephson junctions

• array of Josephson junctions, shunted by a common RLC-load (capa-

citances are neglected)

h̄
2eR

dφk
dt

+ Ic sinφk = I − dQ
dt

dΦ
dt

+ r
dQ
dt

+
Q
C

=
h̄
2e ∑

k

dφk
dt

I
J

R

r C L

• the case of linear RLC-load can be reduced to the Kuramoto model

(Wiesenfeld & Swift, 1995)

• we consider nonlinear load: the magnetic flux Φ = L0Q̇+L1Q̇3

• phase equation is of general nonlinear coupling type
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Josephson junctions: numerical results

Critical coupling

εq ≈ 0.13
0.6
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