-

The continuous production of
bioethanol: One, two and three tank
reactor designs

S.D. Watt! H.S. Sidhu!, M.I. Nelson?, A.K. Ray®

(1) School of Physical, Environmental and Mathematical Science, UNSW@ADFA,
AUSTRALIA.
(2) School of Mathematics & Applied Statistics, University of Wollongong, AUSTRALIA.

(3) Department of Chemical and Biochemical Engineering, University of Western Ontario,

CANADA

Bioethanol production — p.1/15



Talk Outline
-

# Brief background.

# Model description.

#® Results — dynamical & optimal performance.
# Conclusion and future work.
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Why manufacture bioethanol?

# The energy content of ethanol is approximately
two-thirds that of petrol by volume.

# Ethanol contains 35% oxygen and when blended with
petrol results in a more even and complete combustion
of fuels — reduces knocking and improves performance

# Reduced emissions — greenhouse gas emissions

reduced by up to 19%, tailpipe carbon monoxide by as
much as 30%
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Background — bioethanol

fWhat IS bioethanol? T

Bioethanol is ethanol that is made from a starch- or
sugar-based feedstock, such as corn and sugar cane.
Why manufacture bioethanol?

# The energy content of ethanol is approximately

“

two-thirds that of petrol by volume.

Ethanol contains 35% oxygen and when blended with
petrol results in a more even and complete combustion
of fuels — reduces knocking and improves performance

Reduced emissions — greenhouse gas emissions

reduced by up to 19%, tailpipe carbon monoxide by as
much as 30%

It takes only six months to harvest a substantial crop for

fuel. o
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Model — biochemistry

fA.B. Jarzebski. (1992). “Modelling of oscillatory behaviour T
In continuous ethanol fermentation”. Biotechnology Letters,

14(2), 137-142.
#® Substrate (5).
# Product - ethanol - (P)

# Biomass (Zymomonos mobilis)
s Viable cells (X,)

» Non-viable cells (X,y) — non-growing, but still retain
the ability to produce ethanol.

» Dead cells (X,;) — egn uncouples.
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Model — single reactor
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Model — rate expressions
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# Reaction rates can not be negative.

® Substrate limitation.
® Product inhibition.
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Results — ethanol concentration
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Figure 0: Sy =100g1™". 7 =4.12hr.



Results — productivity (Pr = P/7)
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Results — single reactor
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# Two hopf bifurcations if 108 < S <g I_l) < 122.

» One hopf bifurcation if 122 < S (g I_l).

# Period doubling bifurcations.
(So = 138¢g1™1, 5, ~ 13.9 — 14.27 hr)
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Results — single reactor

Two hopf bifurcations if 108 < S <g I_l) < 122.

One hopf bifurcation if 122 < Sy (g I_l).

Period doubling bifurcations.
(So = 138917, 7 &~ 13.9 — 14.27 hr)
Period doubling route to chaos.

Large residence times (S, = 138g1™!, 5 &~ 55 hr).
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Results — single reactor

# Two hopf bifurcations if 108 < S <g I_l) < 122.

» One hopf bifurcation if 122 < S (g I_1>.

# Period doubling bifurcations.
(So = 138917, 7 &~ 13.9 — 14.27 hr)
# Period doubling route to chaos.
Large residence times (S, = 138g1™!, 5 &~ 55 hr).

# Maximum productivity: system operated at a static
steady-state.

® 1£100 < S (gl_l) < 160 then

N Prinax = 3.8039 (g17*hr ") 49.8738 x 10~ |

Bioethanol production — p.9/15



Results — reactor cascade
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Results — double reactor cascade
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Productivity (mg per litre per hour)
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Results - optimal double reactor cascade
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Results — scatter plot
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-

What’s next?

-

Feed concentration : Extensive investigation.

Reactor costs . Can we afford to optimise production?
Recycle : Improves performance.

Performance . Maximise product concentration.

Undergraduate lab : Department of Chemical Engineering,
Monash University.
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Conclusions

Ethanol production using verified model.

Investigated single-reactor.
Investigated double- and triple- reactor cascades.

Double reactor cascade can outperform single reac-
tor by upto 34%.

5. Triple reactor cascade can outperform single reactor
by upto 36%.
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Conclusions

Ethanol production using verified model.
Investigated single-reactor.
Investigated double- and triple- reactor cascades.

> W e

Double reactor cascade can outperform single reac-
tor by upto 34%.

5. Triple reactor cascade can outperform single reactor
by upto 36%.

6. Equal double reactor cascade can outperform single
reactor by 27%.

7. Equal triple reactor cascade can outperform single re-
actor by 28%.
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