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1 Background



• Big picture - synchronization in nature.

• Well-known model - self-driven phase oscillators with sine coupling 
and frozen-in disorder of intrinsic frequencies:

• Special case - nearest-neighbor interaction:

• Known fact (Strogatz and Mirollo):
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• Another fact: although there is no globally-synchronizing transition, 
collective structures do exist.

• Example: clusters of common frequency, 1-d (Ermentrout and Kopell, 
1984).  
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• Frequency clusters is a complicated problem (Strogatz and Mirollo, 
1987).  Restrict the discussion to 1 dimension.

• Ermentrout and Kopell:

In a chain with a linear frequency profile:

– proved the existence of limit cycles 
– related them to breaks in frequency clusters
– predicted sizes of frequency differences between neighboring 

clusters

Global, dynamical systems point of view.



• Around the same time, renormalization group method was developed 
for random 1-d quantum spin chains (Dasgupta and Ma, 1980).

• Recently extended by one of us (E. Altman, Y. Kafri, A. Polkovnikov, 
G. Refael, 2004) to random 1-d Josephson junction arrays.
This motivated our work.

• Strongest coupling decimation:

• Large frequency decimation:



Goal: predict statistical properties of 
cluster sizes and frequencies.



2 RG steps



(a) “Crazy oscillator” decimation   



• Include influence of the neighbors perturbatively
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• Strong randomness 

Crazy oscillator decimation step

(zeroth-order solution)



• Frequencies of neighbors get updated: (similar for CO)

• Crazy oscillator dynamics solved

• Interaction between oscillators 2 and 4 is introduced:

• Non- synchronizing no bearing on cluster formation ignore

• A break is introduced between neighbors of the “crazy oscillator”

Results of perturbative calculation:
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(b) Strong coupling decimation



• If no perturbation oscillators 1 and 2 lock in phase when 

• Strong randomness weak perturbation

• Weak perturbation phase difference wobbles, but does not grow, 
i.e. frequencies are still locked

• Perturbative calculation can justify when this is so

• Approximate phase difference by a constant

large coupling
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Strong coupling decimation step:
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In 1 dimension, can get rid of  by re-defining    s!
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Strong coupling decimation step:



Strong coupling decimation step:
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Strong coupling: two oscillators one oscillator 
with different parameters



3 Numerical RG scheme 



• “crazy” elements strong randomness RG: distributions with wide tails.

• Currently working with Lorentzians for both Ks and       .

•
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Proceed from largest parameters to smallest:

• Largest  K strong coupling

- Oscillator pair combined.

- Mass renormalized:

- Frequency renormalized:

• Largest crazy oscillator  (if                     )

- Chain breaks

- Crazy oscillator frequency renormalized:

- Neighboring frequency renormalized:

• Decimated-out crazy oscillators model frequency clusters:

• Repeat until all renormalized oscillators become crazy.  
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4 Results



Comparison of cluster frequencies of simulation vs. numerical RG



RG predicts the clustering effect!

What do we expect for statistics of cluster sizes?



• nsize = number of clusters of a given size

• N = total number of clusters

•

Statistics of cluster sizes: simulation vs. numerical RG
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Statistics of cluster sizes: simulation vs. numerical RG
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−=ξ where p is the probability of finding a crazy oscillator based on the 
distributions of the actual (not renormalized) chain.



Statistics of cluster frequencies



Distribution of cluster frequencies: simulation vs. numerical RG



Strogatz and Mirollo, 1987:

“The dynamical behavior of

is not well understood in the regime before phase-locking occurs.  In 
particular, it is not known if or how the distribution of number and size 
of synchronized clusters scale with K, N, and d”.
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Method works.  
More to do …

• Extending this technique to regimes of weaker randomness.

• Analytical RG flow. 

• Comparison with probabilitstic points of view:

– Eample: what is the probability of forming a cluster between two crazy 
oscillators?

• General dimension.


	Renormalization group method for predicting frequency clusters in a chain of nearest-neighbor Kuramoto oscillators.
	Outline:
	1	Background
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	2	RG steps
	(a) “Crazy oscillator” decimation   
	Slide Number 11
	Slide Number 12
	(b) Strong coupling decimation
	Slide Number 14
	Slide Number 15
	Slide Number 16
	3	Numerical RG scheme 
	Slide Number 18
	Slide Number 19
	4	Results
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Method works.  �More to do …

