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1 Background



Big picture - synchronization in nature.

Well-known model - self-driven phase oscillators with sine coupling
and frozen-in disorder of intrinsic frequencies:

b=0,+Y K,sinl0,-6,)  ie{l,N}
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Special case - nearest-neighbor interaction:

6. =w +Ksin(@_, —6,)+Ksin(6,,-6.)
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Known fact (Strogatz and Mirollo):

Iim(probabilily of global synchronization) = 0 If , are random.

N—o0



Another fact: although there is no globally-synchronizing transition,
collective structures do exist.

Example: clusters of common frequency, 1-d (Ermentrout and Kopell,
1984).
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* Frequency clusters is a complicated problem (Strogatz and Mirollo,
1987). Restrict the discussion to 1 dimension.

 Ermentrout and Kopell:
In a chain with a linear frequency profile:
— proved the existence of limit cycles

— related them to breaks in frequency clusters

— predicted sizes of frequency differences between neighboring
clusters

Global, dynamical systems point of view.




Around the same time, renormalization group method was developed
for random 1-d quantum spin chains (Dasgupta and Ma, 1980).

Recently extended by one of us (E. Altman, Y. Kafri, A. Polkovnikov,
G. Refael, 2004) to random 1-d Josephson junction arrays.

This motivated our work.
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Large frequency decimation:

p ¢

Strongest coupling decimation:



Goal: predict statistical properties of
cluster sizes and frequencies.



2 RG steps



(a) “Crazy oscillator” decimation



Crazy oscillator decimation step

0. =w. +K, sin(6,_,—0,)+K,sin(6., -6,

l l

intrinsic
frequency

O _ - @ ~ Qt

(zeroth-order solution)

LS L < 1
e Strong randomness - 0’0

 Include influence of the neighbors perturbatively



Results of perturbative calculation:

2
Frequencies of neighbors get updated: @, = ®, +EZ (similar for CO)

Crazy oscillator dynamics - solved

. = . . K2K3
Interaction between oscillators 2 and 4 is introduced: o 005(6?2 —6’4)

Non- synchronizing = no bearing on cluster formation - ignore

intrinsic intrinsic
frequency frequency

oscillator oscillator
number humber



(b) Strong coupling decimation



Strong coupling decimation step:

‘/ large coupling

0 1 2 3

« If no perturbation - oscillators 1 and 2 lock in phase when 2K > Aw

K, K
« Strong randomness = ?12¢

i i

>>1 = weak perturbation

 Weak perturbation - phase difference wobbles, but does not grow,
l.e. frequencies are still locked

* Perturbative calculation can justify when this is so

« Approximate phase difference by a constant 0



Strong coupling decimation step:

m6, = meo, + K,sin(6, — 6,)+ K, sin(0, - 6,)
m,0, = m,m, + K,sin(6, — 6, )+ K,sin(0; — 6,)

v

MO = M + K, sin 6’0—®+m25 + K sin «93—®——m15
M M

In 1 dimension, can get rid of o by re-defining @s!



Strong coupling decimation step:
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(m /Mz(m1+m2) \
N 6,6, N O=(mb, +m,b,)IM
- o _o'= (myaw, + m,w,)| M

Strong coupling: two oscillators = one oscillator
with different parameters



3 Numerical RG scheme



o ‘“crazy” elements - strong randomness RG: distributions with wide tails.

e Currently working with Lorentzians for both Ks and @S .

Al
p(x)— A2 + x°

* Choose 4, =1andvary A,



Proceed from largest parameters to smallest:

Largest K » strong coupling

A

- Oscillator pair combined.

- Mass renormalized: M =(m, +m,)

- Frequency renormalized: @'= (mla)l T My, )/M

Largest @ > crazy oscillator (if K/(1£2) <1 )
- Chain breaks
. . Ql_ Q _ K12,CO _ K??,CO
- Crazy oscillator frequency renormalized: ™"~ """ 2, , O 2mu, ,Q
2
- Neighboring frequency renormalized: :a)ﬁ& o,
2my 11y €2 Hid = em,

Decimated-out crazy oscillators model frequency clusters: @ and M

Repeat until all renormalized oscillators become crazy.



4 Results



Comparison

of cluster frequencies of simulation vs. numerical RG
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RG predicts the clustering effect!

What do we expect for statistics of cluster sizes?



Statistics of cluster sizes: simulation vs. numerical RG
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Statistics of cluster sizes: simulation vs. numerical RG
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Eco = (11 ) where p is the probability of finding a crazy oscillator based on the
nL—p

distributions of the actual (not renormalized) chain.



Statistics of cluster frequencies



Distribution of cluster frequencies: simulation vs. numerical RG
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Strogatz and Mirollo, 1987:

“The dynamical behavior of

b=w,+K Y sin(0,-6,), ie{l,...1}!

je{n.n.}

IS not well understood in the regime before phase-locking occurs. In
particular, it is not known if or how the distribution of number and size
of synchronized clusters scale with K, N, and d”.



Method works.
More to do ...

Extending this technique to regimes of weaker randomness.
Analytical RG flow.

Comparison with probabilitstic points of view:

— Eample: what is the probability of forming a cluster between two crazy
oscillators?

General dimension.
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