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Roadmap
•

 
What/Why granular materials?

•
 

Where granular materials and molecular 
matter part company—open questions of 
relevant scales

Use experiments to explore:
•

 
Forces, force fluctuations

•
 

Jamming
•

 
Plasticity, diffusion—unjamming

 
from 

shear
•

 
Granular friction



What are Granular Materials?

•
 

Collections of macroscopic ‘hard’
 

particles: 
interactions are dissipative
–

 
Classical h 0

–
 

A-thermal T 0
–

 
Draw energy for fluctuations from macroscopic flow

–
 

Exist in phases: granular gases, fluids and solids
–

 
Large collective systems, but outside normal statistical 
physics

–
 

Analogues to other disordered solids: glasses, colloids..



Examples of Granular Materials

•
 

Earthquake gouge
•

 
Avalanches and mudslides

•
 

Food and other natural grains: wheat, 
rice,…

•
 

Industrial materials: coal, ores,…
•

 
Soils and sands

•
 

Pharmaceutical powders
•

 
Dust

•
 

Chemical processing—e.g. fluidized beds



Questions

•
 

Fascinating and deep statistical questions
–

 
What is the nature of granular fluctuations—what is their 
range?

–
 

What are the statistical properties of granular matter?
–

 
Is there a granular temperature?

–
 

Phase transitions
–

 
Jamming and connections to other systems: e.g. colloids, 
foams, glasses,…

–
 

The continuum limit and ‘hydrodynamics—at what scales?
–

 
What are the relevant macroscopic variables? 

–
 

What is the nature of granular friction?
–

 
Novel instabilities and pattern formation phenomena



Practical Issues
o Massive financial costs  Claim: 
~$1 Trillion/year in US alone for granular 

handling

o
 

Failures are frequent, typical facilities operate 
at only ~65% of design

o
 

Soil stability is difficult to predict/assess

o
 

How is stress/information transmitted in 
granular materials?



Problems close to home

Photo—Andy Jenike



Assessment of theoretical understanding

•

 

Basic models for dilute granular systems are reasonably successful—

 
model as a gas—with dissipation

•

 

For dense granular states, theory is far from settled, and under

 
intensive debate and scrutiny

Are dense granular materials like dense molecular systems?

How does one understand order and disorder, fluctuations, 
entropy and temperature?

What are the relevant length/time scales, and how does 
macroscopic (bulk) behavior emerge from the microscopic 
interactions? 



Granular Material Phases-Gases
Molecular Gases:

Collisions are short, velocities satisfy the Maxwell-Boltzmann

 
distribution (speeds) and are in random directions

P(v) ~ exp[-(m/2)v2/(kB

 

T)]—

<v2> ~ kB

 

T

 

width of distribution 

Granular Gases:
Again, collisions are short, velocities can be Maxwell-

 
Boltzmann-like

<v2> ~ Tg

Expect that granular gases flow much like molecular gases with extra 
dissipation

Granular gases cool spontaneously, show clustering instability



Granular Material Phases-Dense Phases 
Granular Solids and fluids much less well understood than 

granular gases

Forces are carried preferentially on force 
chains multiscale phenomena

Friction and extra contacts preparation history 
matters

Deformation leads to large spatio-temporal 
fluctuations

In many cases, a statistical approach may be the only 
reasonable description



When we push, how do dense granular systems 
move?

•
 

For small pushes, is a granular material elastic, 
like an ordinary solid, or does it behave 
differently?  



What happens for larger deformations?

Jamming—how a material becomes solid-like as 
particles are brought into contact, or fluid-like 
when grains are separated

Plasticity—irreversible deformation when a material 
is sheared

Is their common behavior in other disordered solids: 
glasses, foams, colloids,…



Shearing

•
 

What occurs if we ‘tilt’
 

a sample—i.e. deform a 
rectangular sample into a parallelogram?

•
 

Equivalent to compressing in one direction, and 
expanding (dilating) in a perpendicular direction  

•
 

Shear causes irreversible (plastic) deformation.  
Particles move ‘around’

 
each other

•
 

What is the microscopic nature of this process for 
granular materials?



A look at fluctuations, force chains and 
history dependence



GM’s exhibit novel meso-scopic
 

structures:
 

Force Chains

Howell et al. 
PRL 82, 5241 (1999)

2d Shear 
Experiment



Rearrangement of force chains leads to 
strong force fluctuations

Miller et al. PRL 77, 3110 (1996)

Time-varying
Stress in 
3D Shear Flow



Video of 2D shear flow



Frictional indeterminacy => history dependence

Note: 5 contacts => 10 unknown force
components.

3 particles => 9 constraints



Point of View: To understand granular materials, one should 
take a statistical approach

Point-wise distributions for: 
forces between particles, displacements/velocities…

Correlations—to tell us the important sizes for collective 
behavior

Structural information—e.g. how does packing affect 
granular properties?

Response to perturbations—How
 

do granular solids 
respond to external forces/displacements?

What does this mean—what do we need to know?



Experiments to determine vector contact forces
 P1

 

(F) is example of particle-scale statistical measure

(Trush

 

Majmudar

 

and RPB, Nature, June 23, 2005)

Experiments use
biaxial tester
and photoelastic
particles



Overview of Experiments

Biax

 

schematic Compression

ShearImage of 
Single disk

~2500 particles, bi-disperse,     dL

 

=0.9cm, dS

 

= 0.8cm,    NS

 

/NL

 

= 4



Measuring forces by photoelasticity



Basic principles of technique

•
 

Process images to obtain particle centers and 
contacts

•
 

Invoke exact solution of stresses within a disk 
subject to localized forces at circumference

•
 

Make a nonlinear fit to photoelastic
 

pattern using 
contact forces as fit parameters

•
 

I = Io

 

sin2[(σ2

 

-
 

σ1

 

)CT/λ]
•

 
In the previous step, invoke force and torque 
balance

•
 

Newton’s 3d law provides error checking



Examples of Experimental and ‘Fitted’
 

Images

Experiment Fit



Current Image Size



Force distributions
 for shear and compression

Shear Compression

εxx

 

= -εyy

 

=0.04; Zavg

 

= 3.1 εxx

 

= -εyy

 

=0.016;   Zavg

 

= 3.7



Edwards Entropy-Inspired Models for P(f)

•
 

Consider all possible states consistent with applied 
external forces, or other boundary conditions—

 assume all possible states occur with equal 
probability

•
 

Compute Fraction where at least one contact force 
has value f P(f)

•
 

E.g. Snoeier
 

et al. PRL 92, 054302 (2004)
•

 
Tighe

 
et al. Phys. Rev. E, 72, 031306 (2005)



Some Typical Cases—isotropic compression and 
shear

Snoeijer

 

et al.  ↓ Tigue

 

et al  ↓.

Compression

Shear 



Correlation functions determine important scales

•
 

C(r) = <Q(r + r’) Q(r’)>

•
 

<> average over all vector displacements r’

•
 

For isotropic cases, average over all directions in
 r.

•
 

Angular averages should not be done for 
anisotropic systems



Spatial correlations of forces—angle dependent

Shear Compression

Chain direction

Direction 
normal
To chains

Both directions equivalent



Roadmap
•

 
What/Why granular materials?

•
 

Where granular materials and molecular matter 
part company—open questions of relevant scales

•
 

Dense granular materials: need statistical approach
Use experiments to explore:
•

 
Forces, force fluctuations ◄

•
 

Jamming ◄
•

 
Plasticity, diffusion

•
 

Granular friction



Jamming—a ‘big’
 

picture 

Bouchaud
 

et al.

Liu and Nagel



The Jamming Transition

•
 

Simple question: 
What happens to key properties such as pressure, contact 

number as a sample is isotropically
 

compressed/dilated 
through the point of mechanical stability?

Predictions (e.g. O’Hern

 

et al. Torquato

 

et al., 
Schwarz et al.

Z ~ ZI

 

+(φ
 

–
 

φc

 

)ά
 (discontinuity)

Exponent ά ≈ 1/2

P ~(φ
 

–
 

φc

 

)β

Z = contacts/particle; Φ
 

= packing fraction

β

 

depends on force law
(= 1 for ideal disks)

S. Henkes
 

and B. Chakraborty: entropy-based model gives P and Z 
in terms of a field conjugate to entropy.  Can eliminate to get P(z)



Experiment: Characterizing the Jamming 
Transition—Isotropic compression

Isotropic
compression

Pure shear

Majmudar

 

et al. PRL 98, 058001 (2007)



LSQ Fits for Z give an exponent of 0.5 to 0.6



LSQ Fits for P give β ≈ 1.0 to 1.1



What is actual force law for our disks?



Comparison to Senkes
 

and Chakrabory
 

prediction



Roadmap
•

 
What/Why granular materials?

•
 

Where granular materials and molecular 
matter part company—open questions of 
relevant scales

•
 

Dense granular materials: need statistical 
approach

Use experiments to explore:
•

 
Forces, force fluctuations ◄

•
 

Jamming ◄
•

 
Plasticity, diffusion-shear◄

•
 

Granular friction



Irreversible motion: diffusion and plasticity

•
 

What happens when grains slip past each other?
•

 
Irreversible in general—hence plastic

•
 

Occurs under shear
•

 
Example1: pure shear

•
 

Example 2: simple shear

•
 

Example 3: steady shear 



Experiments: Plastic failure and 
diffusion—pure shear and Couette

 
shear



Granular plasticity for pure shear

Work with A. Tordesillas
 

and coworkers

Use biax

 

and photoelastic

 

particles
Mark particles with UV-sensitive
Dye for tracking



Apply Pure Shear

Resulting state
with polarizer

And without 
polarizer



Consider cyclic shear

Forward shear--polarizer

Backward shear--polarizer



Particle Displacements and Rotations

Forward shear—under UV

Reverse shear—under UV



Deformation Field—Shear band forms

At strain = 0.085 At strain = 
0.105—largest
plastic event

At strain = 
0.111



Hysteresis
 

in stress-strain and Z-strain curves

Z = avg

 

number
of contacts/particle

Note that P vs. Z 
Non-hysteretic



Statistical Measures: Contact Angle Distributions

Forward shear Reverse shear



Force Distributions

Exponential?

Or Power-law?

Normal forces Tangential forces

Normal forces



Couette
 

shear—provides excellent setting to 
probe shear band

B.Utter
 

and RPB PRE 69, 031308 (2004)
Eur. Phys. J. E 14, 373 (2004)



Schematic of apparatus



Photo of Couette
 

apparatus

~ 1 m

~50,000 particles, some have dark bars for tracking



Motion in the shear band

Typical particle
Trajectories 

Mean velocity profile



Characterizing motion in the shear band

•
 

Mean azimuthal
 

flow (θ-direction)
•

 
Fluctuating part—looks diffusive

•
 

Other?



How to characterize diffusion?

Random walker:  at times τ, step right or left  by L with probability 1/2

Mean displacement: <X> = 0

Variance: <X2> = 2Dt        t = n τ;    D = L2/τ

Imagine many independent walkers characterized by a density P(x,t)

∂P/∂t = D ∂2P/∂x2 Diffusion equation

Motion from step to step is uncorrelated



Variances vs. time—seem to grow faster/slower then 
linearly!

Tangential

Radial



Could this be fractional Brownian motion?

<X2> ~ t2H

 

H =1/2 for ordinary case

H < ½
 

+ anticorrelation—step to the Right reduces probability
of another rightward step

H > ½
 

+ correlation—step to the Right increases probability
of another rightward step

Suggested in calculations by Radjai
 

and Roux,
Phys. Rev. Lett. 89, 064302 (2002)



But there is something else important—shear 
gradient Taylor dispersion

∂P/∂t = D ∂2P/∂x2  

∂P/∂t + V.grad(P) = D ∆P  (D now a tensor)

In 2D and in the presence of a velocity field, v

Simple shear:  Vx

 

= γ
 

y       Vy

 

= 0

<YY> = 2Dyy

 

t

<XX> = 2Dxx

 

t + 2Dxy

 

γt2

 

+ (2/3)Dyy

 

γt3

<XY> = 2Dxy

 

t + Dyy

 

γ
 

t2



Diffusivities only appear sub-
 

or super-diffusive 
due to Taylor-like dispersion and rigid 

boundary

Experiment
Simulations of random
walk, with velocity profile, etc



Is there more than just diffusion and mean flow?
 Relating experiments to Falk-Langer picture

•
 

Follow small mesoscopic
 

clusters for short times ∆t
•

 
Break up motion into 3 parts:
–

 

Center of mass (CoM)
–

 

Smooth deformation (like elasticity)
–

 

Random, diffusive-like motion

•
 

Punch line: all three parts are comparable in size



Procedure

•
 

Identify small clusters of particles

•
 

Follow change in position over ∆t
 

of each particle wrt
 cluster CoM:  ri ri’

•
 

LSQ fit to affine transformation:  ri

 

’ = E ri

•
 

The non-affine part is δri

 

= ri

 

’ - E ri

•
 

D2
min = Σ

 
(δri

 

)2

 

(sum over cluster)

•
 

Write E = F Rθ

 

F symmetric

•
 

F = I + ε ε is the strain tensor



Deformation occurs locally—Disks show local 
values of D2

min

 

–bright large D2
min



Distributions of affine strain

Deviatoric strain

Compressive strain 

Rotation



Distributions of D2
min for different distances from 

shearing wheel

Useful candidate
for measure of
disorder?



What about distributions of the δri
 

?



Quasi-Gaussians 

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5
Ln(Non-affine Radial Displacement)
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r = 1-2 d
r = 3-4 d
r = 5-6 d
r = 7-8 d
r = 9-10 d
X^1.5

If P = exp(-a(δri)2) then log(log(P)) ~ log (|δri|) 

Slope is 3/2



Understanding distributions of D2
min

•
 

P(D2
min ) = ∫PN

 

(δr1

 

,…,δrN

 

) *
δ(D2

min -
 

Σ
 

(δri

 

)2

 
) d(δri

 

)

Assume PN

 

(δr1

 

,…,δrN

 

) = Π
 

P1

 

(δri

 

) 
(P1

 

(δri

 

) gaussians)

Then    P(D2
min ) ≈

 
(D2

min )N-1 exp(-
 

D2
min /C)



Comparison of various ‘width’
 

parameters

All quantities have similar behavior and similar sizes:

Vθ

 

∆t = macroscopic motion
Strains from ε
(D ∆t)1/2

 

= diffusive motion



Why does granular friction matter?

•
 

Frictional failure is at the base of our 
understanding of the macroscopic slipping in 
classical granular models

•
 

We depend on granular friction (traction) for 
motion on soils…

•
 

Granular friction is important for the stick-slip 
motion in earthquake faults

•
 

Granular friction controls avalanche behavior



Granular Rheology—a slider experiment



Experimental apparatus



Video of force evolution



Non-periodic Stick-slip motion

•
 

Stick-slip motions in our 2D 
experiment are non-periodic

 and irregular
•

 
Time duration, initial pulling 
force and ending pulling 
force all vary in a rather 
broad range

•
 

Random effects associated 
with small number of 
contacts between the slider 
surface and the granular disks.
Size of the slider ~ 30-40 d Definitions of 

stick and slip 
events



Stick-slip Events Distributions

•
 

Gutenberg Richter 
Relation for earthquake 
events distribution:
where b is around -1. 

•
 

The change of F2

 during stick-slip events 
is a  measure of the 
energy stored or 
released in these events. 

•
 

For lower Δ(F2) events, 
a power law fit applies 
quite well.

•
 

For higher Δ(F2) events, 
we need more data to 
get a better statistics.

bMaN +=log



Observations:

•
 

Force chain structures change significantly in a 
slip event. 

•
 

As a build-up to a big event, force chains tend to 
be bent by the moving slider, releasing some 
energy, but not much.

•
 

When bent too much, some force chains can no 
longer hold, there is rearrangement of these 
chains, with the significant energy release.

•
 

Build force-chain-spring model with failure 
thresholds



Video of force chain failure model



Simple comparison—model/experiment—
 distribution of energy loss in pulling spring



Conclusions

•
 

Statistical approach provides an important new 
way to understand the properties of granular 
materials

•
 

Use distributions of forces, correlation functions…
•

 
Long-range correlations for forces in sheared 
systems—thus, force chains can be mesoscopic

 
at 

least
•

 
Predictions for jamming (mostly) verified

•
 

Z may be key variable for shear failure
•

 
Diffusion in sheared systems: insights into 
microscopic statistics of driven granular materials

•
 

Granular friction with dynamics—many open and 
challenging puzzles
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