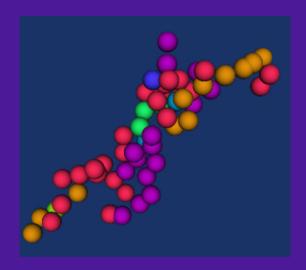
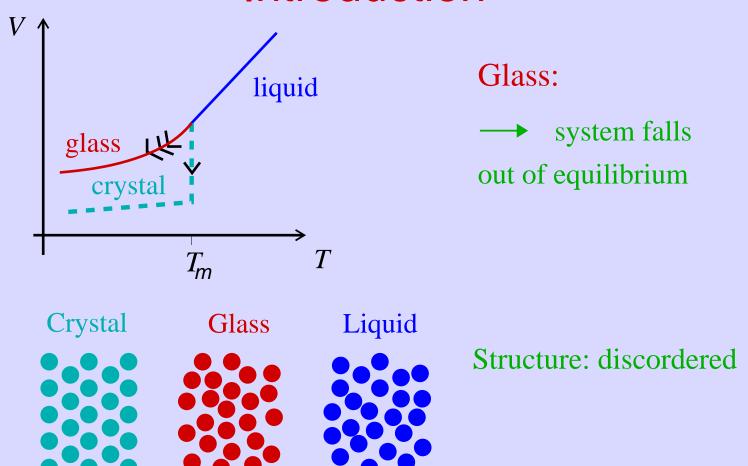
Self-Organized Criticality In a Glass

Katharina Vollmayr-Lee, Bucknell University January 3, 2008

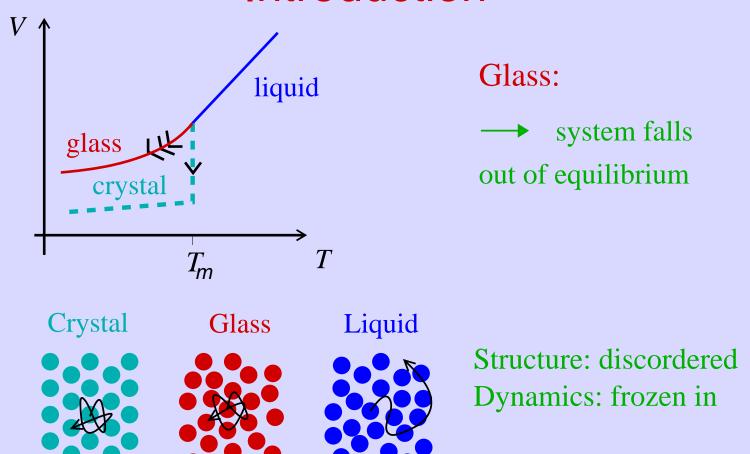


Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach

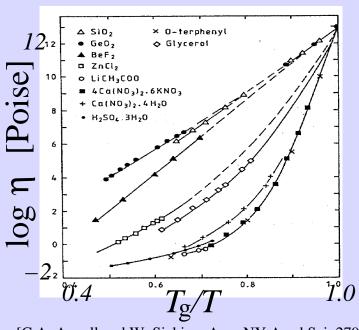
Introduction



Introduction



Introduction



Dynamics:

→ slowing down of many decades

[C.A. Angell and W. Sichina, Ann. NY Acad.Sci. 279, 53 (1976)

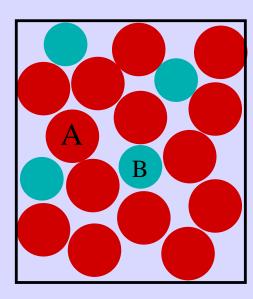
Model

Binary Lennard-Jones System

$$V_{\alpha\beta}(r) = 4 \,\epsilon_{\alpha\beta} \left(\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right)$$

$$\sigma_{\mathsf{AA}} = 1.0$$
 $\sigma_{\mathsf{AB}} = 0.8$ $\sigma_{\mathsf{BB}} = 0.88$ $\epsilon_{\mathsf{AA}} = 1.0$ $\epsilon_{\mathsf{AB}} = 1.5$ $\epsilon_{\mathsf{BB}} = 0.5$

[W. Kob and H.C. Andersen, PRL 73, 1376 (1994)]



800 A and 200 B

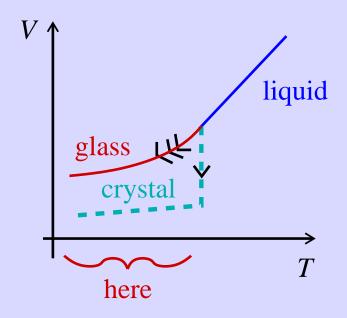
Simulations

Molecular Dynamics Simulations

Velocity Verlet

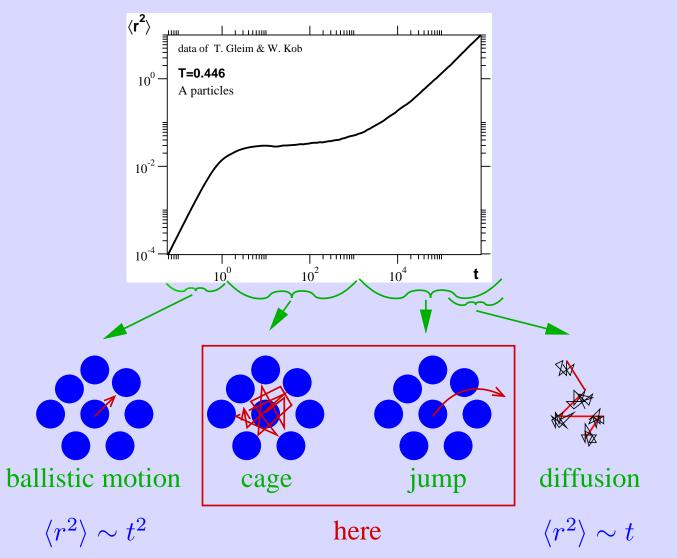
below glass transition:

$$T = 0.15 - 0.43$$
 $T_{\rm c} = 0.435$

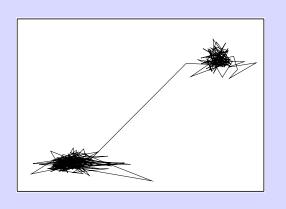


Cage-Picture

Mean-Squared Displacement: $\langle r^2 \rangle(t) = \left\langle \frac{1}{N} \sum_{i=1}^N \left(\underline{r}_i(t) - \underline{r}_i(0)\right)^2 \right\rangle$

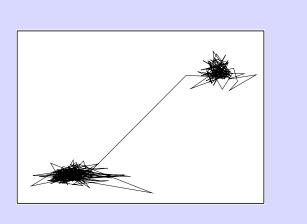


Definition: Jump Occurrence

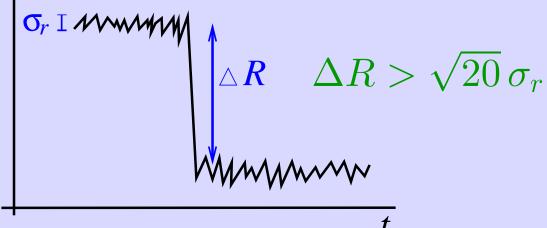


Single Particle Trajectory $\frac{\sigma_r}{\Delta R} = \frac{\Delta R}{\Delta R} > \sqrt{20} \, \sigma_r$

Definition: Jump Occurrence



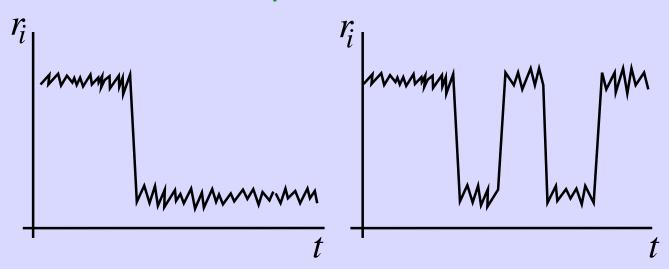
Single Particle Trajectory



Definition: Jump Type

Irreversible Jump

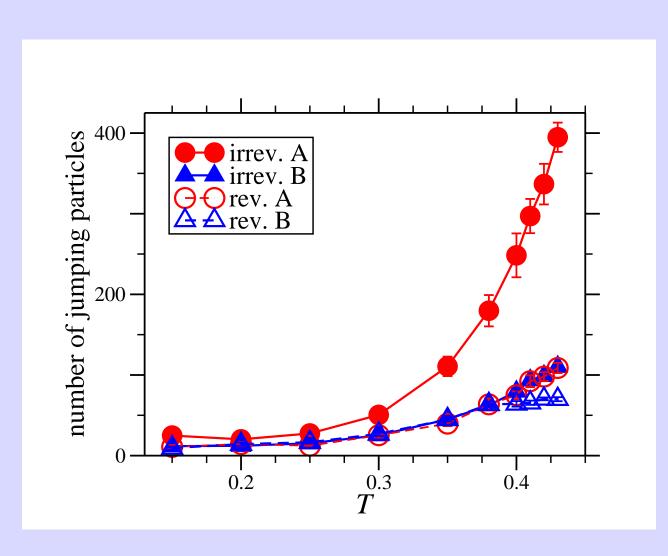
Reversible Jump



Outline

- Jump Statistics
- Correlated Single Particle Jumps
- History Dependence
- Summary

Number of Jumping Particles



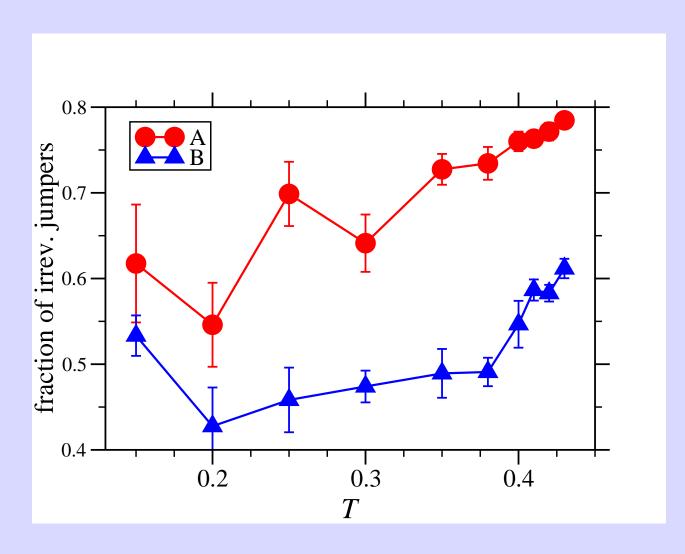
- \Longrightarrow increasing with increasing T
- ⇒ both A & B particles jump
- \Longrightarrow irrev. & reversible jumps at all temperatures T

Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers $=\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$

Fraction of Irreversibly Jumping Particles

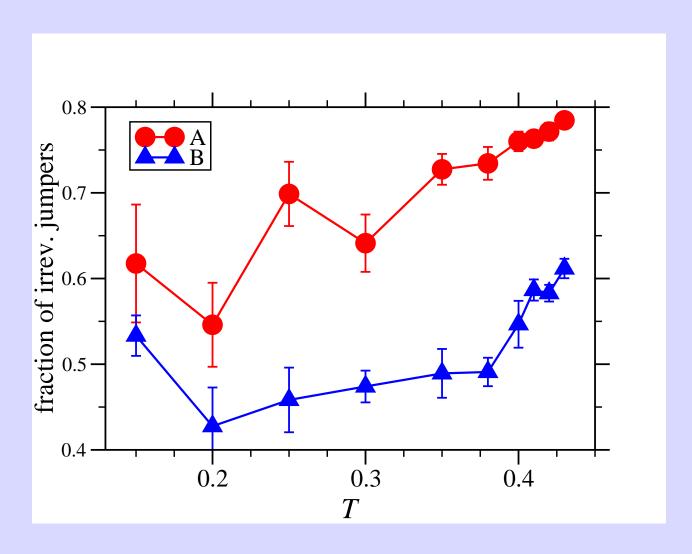
fraction of irrev. jumpers = $\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$



 \Longrightarrow fraction of irrev. jumpers increases with increasing T

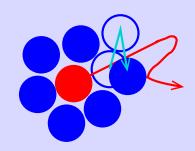
Fraction of Irreversibly Jumping Particles

fraction of irrev. jumpers $=\frac{\text{number of irrev. jump. part.}}{\text{number of jump. part.}}$

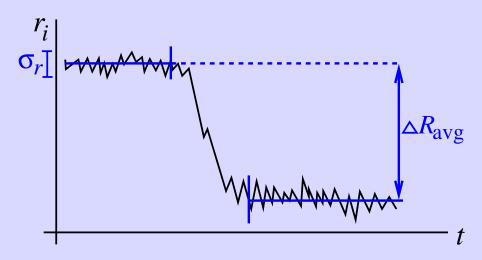


 \Longrightarrow fraction of irrev. jumpers increases with increasing T

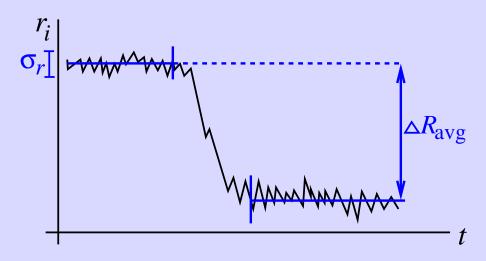
interpretation: door closing

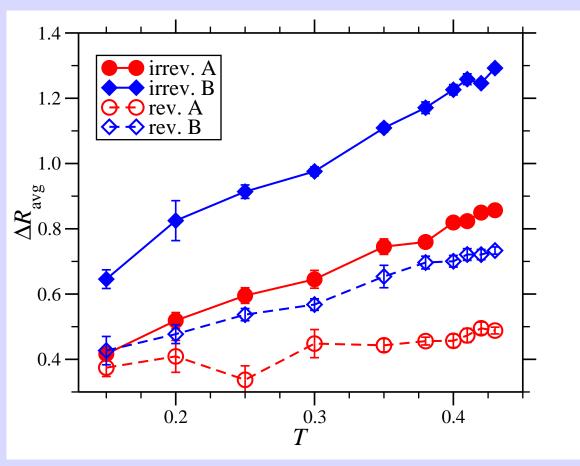


Jump Size



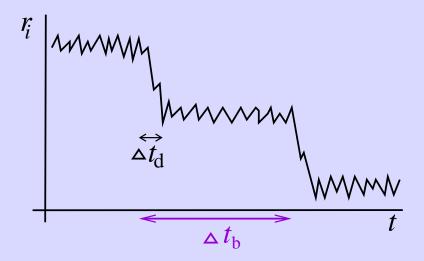
Jump Size



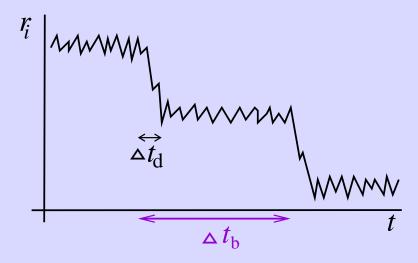


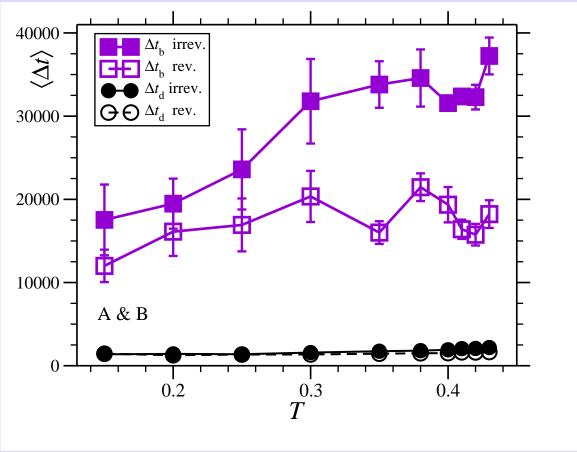
- \Longrightarrow increasing with increasing T
- (smaller) B-particles jump farther
- irreversible jumps
 farther

Time Scale



Time Scale





$$\Longrightarrow \Delta t_{\rm b} \gg \Delta t_{\rm d}$$

 $\Longrightarrow \Delta t_{\mathrm{b}}$ independent of temperature

(whole simulation 10^5)

Summary: Jump Statistics

At larger temperature relaxation:

- not via $\Delta t_{\rm b}$ (indep. of T)
- via larger jumpsizes
- via more jumping particles

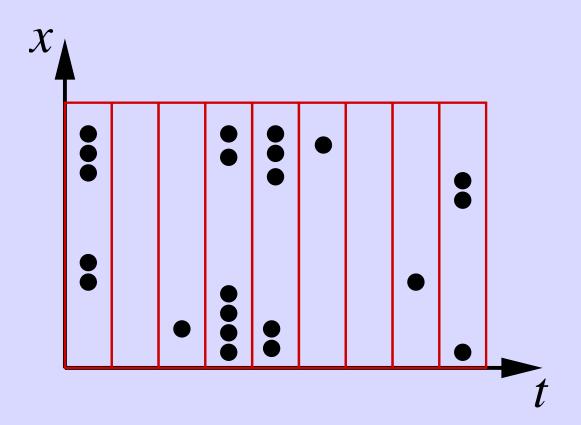
[J. Chem. Phys. **121**, 4781 (2004)]

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - ♦ Temporally Extended Cluster
- History Dependence
- Summary

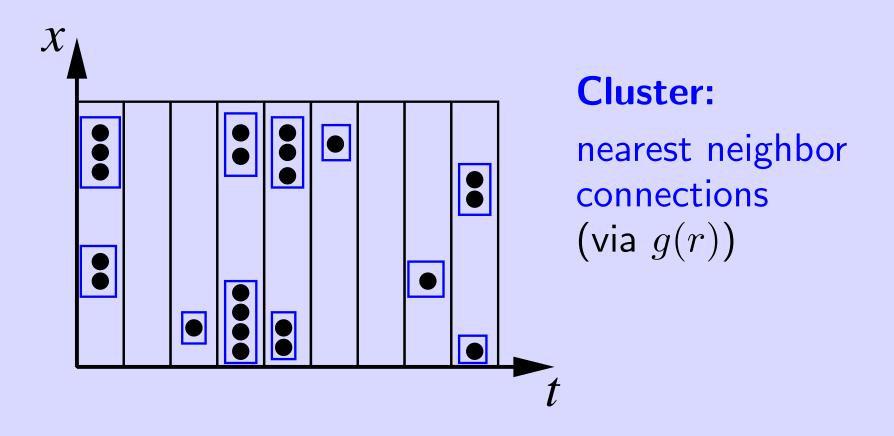
Simultaneously Jumping Particles

Definition: Correlated in Time & Space



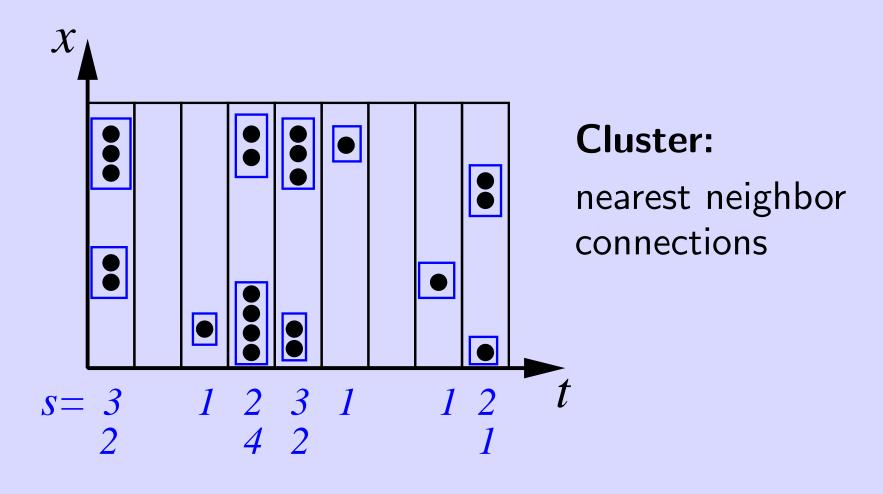
Simultaneously Jumping Particles

Definition: Correlated in Time & Space

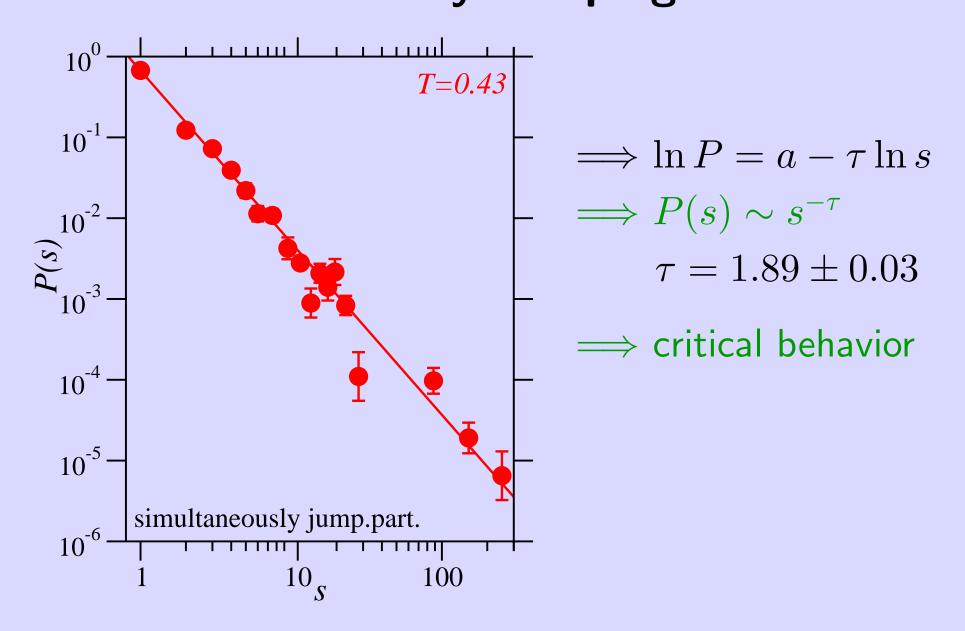


Simultaneously Jumping Particles

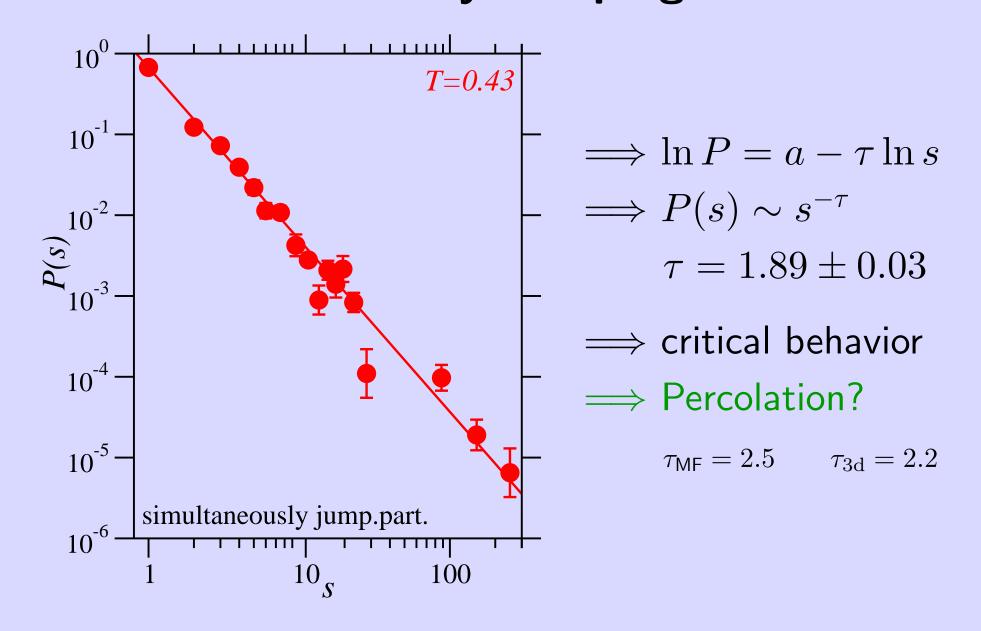
Cluster Size = number of particles in cluster



Cluster Size Distribution of Simultaneously Jumping Particles

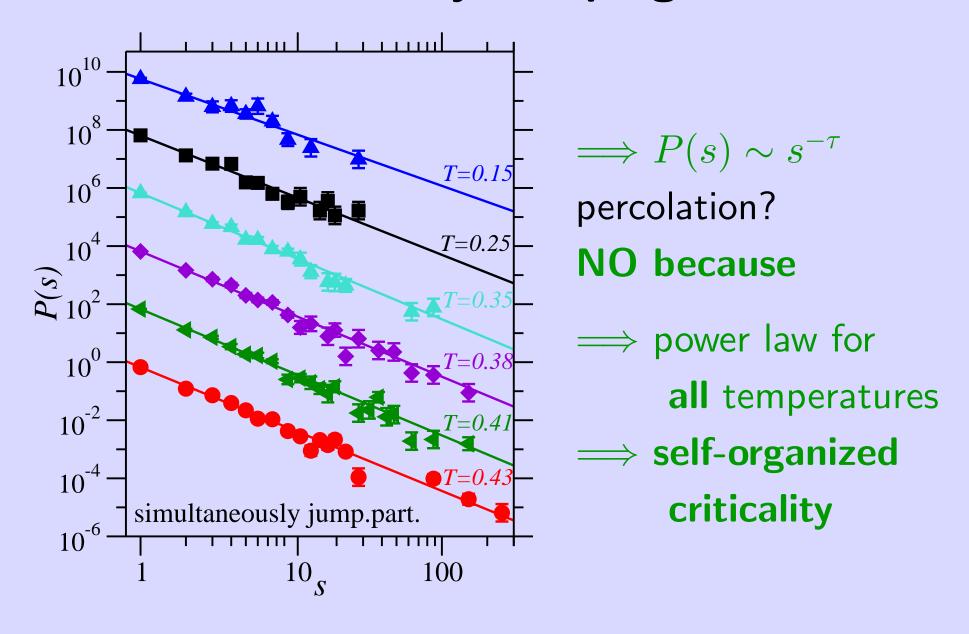


Cluster Size Distribution of Simultaneously Jumping Particles



Cluster Size Distribution

of Simultaneously Jumping Particles



Critical Behavior:

Critical Point at Phase Transition:

power law at specific fine tuned external parameter

e.g. percolation: $P(s)=s^{-\tau}$ at $p=p_c$ at all other p no power law

e.g. jumping particle clusters: $P(s)=s^{-\tau}$ (would be) at $T=T_c$ only

Self-Organized Criticality:

power law for whole range of external parameter here jumping particle clusters: $P(s)=s^{-\tau}$ for all T=0.15-0.43

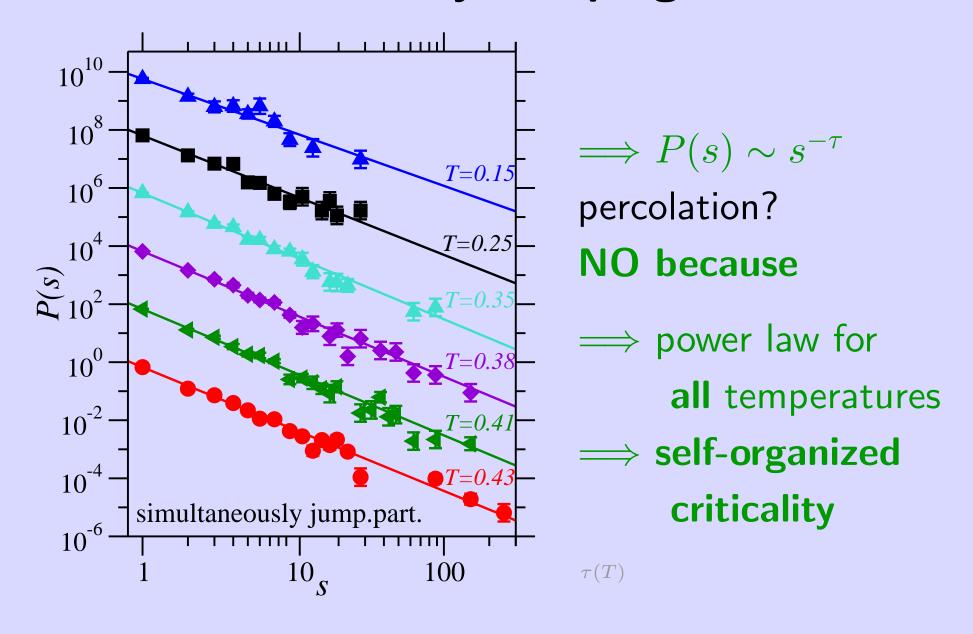
Other Examples:

- sandpile avalanches
- forest fire
- financial market
- earth quakes

[P. Bak, C. Tang, and K. Wiesenfeld, PRL 59, 381 (1987)]

Cluster Size Distribution

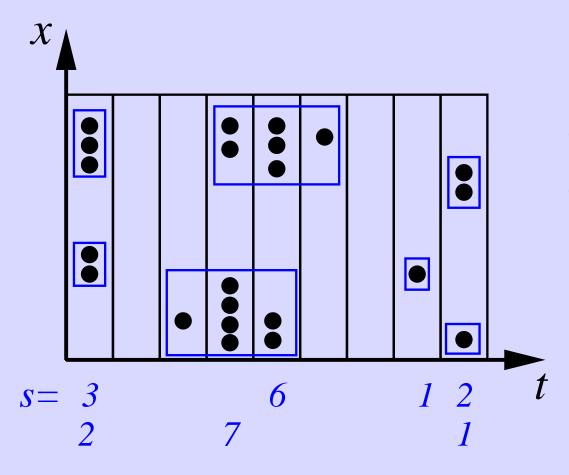
of Simultaneously Jumping Particles



Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - ⋄ Temporally Extended Cluster
- History Dependence
- Summary

Temporally Extended Cluster

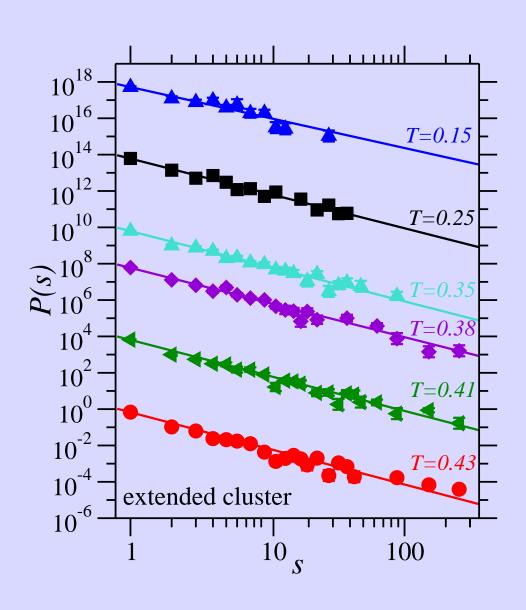


Definition:

cluster of events (\mathbf{r}_i, t_i) connected if:

$$\Delta r < r_{
m cutoff}$$
 and $\Delta t < t_{
m cutoff}$

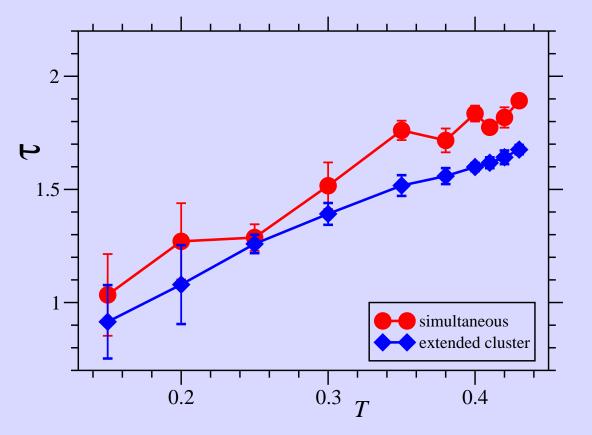
Cluster Size Distribution of Temporally Extended Clusters



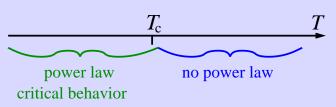
$$\implies P(s) \sim s^{-\tau}$$

Exponent $\tau(T)$

$$P(s) \sim s^{-\tau}$$



slightly above $T_{\rm c}$ $au \approx 1.86$ [Donati et al. 1999]



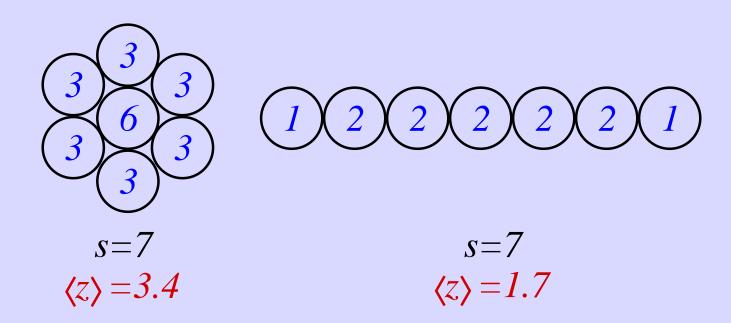
P simult.

Shape of Clusters

```
z = number of nearest neighbors within cluster
```

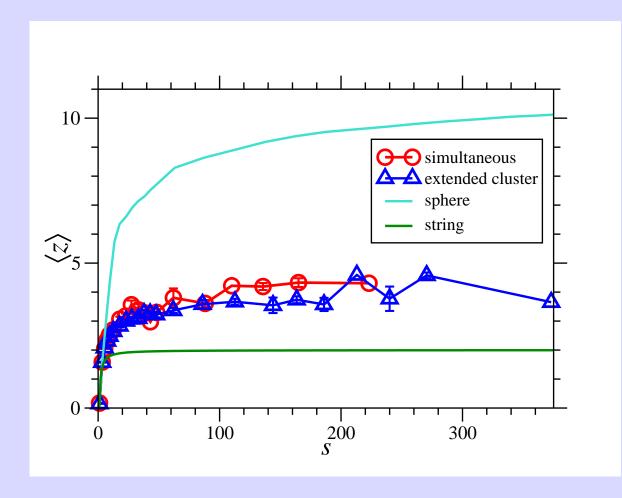
s = number of particles (cluster size)

 $\langle z \rangle$ = average of z over particles $1, \dots s$



Shape of Clusters

```
z= number of nearest neighbors within cluster s= number of particles (cluster size) \langle z \rangle= average of z over particles 1,\ldots s
```



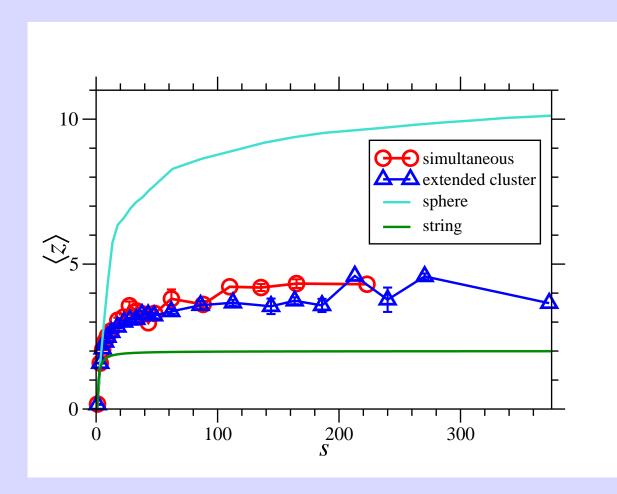
⇒ string-like clusters

Shape of Clusters

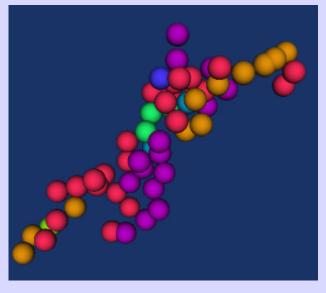
z = number of nearest neighbors within cluster

s = number of particles (cluster size)

 $\langle z \rangle$ = average of z over particles $1, \dots s$



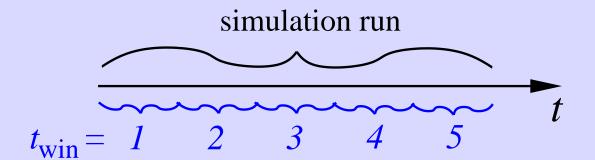
⇒ string-like clusters

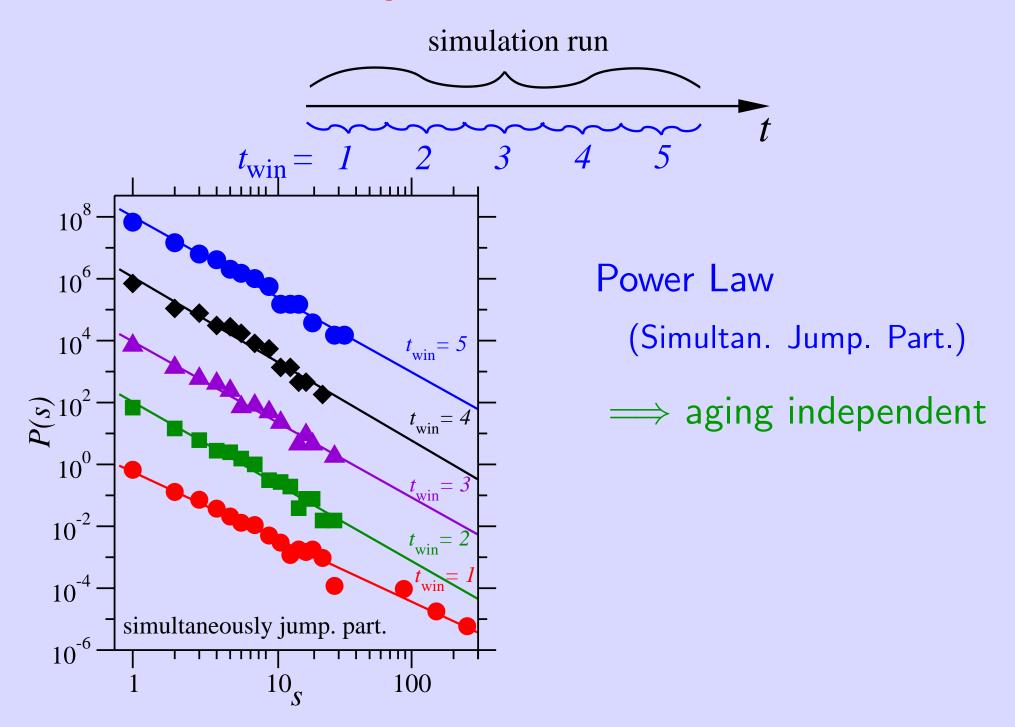


same color = same time

Outline

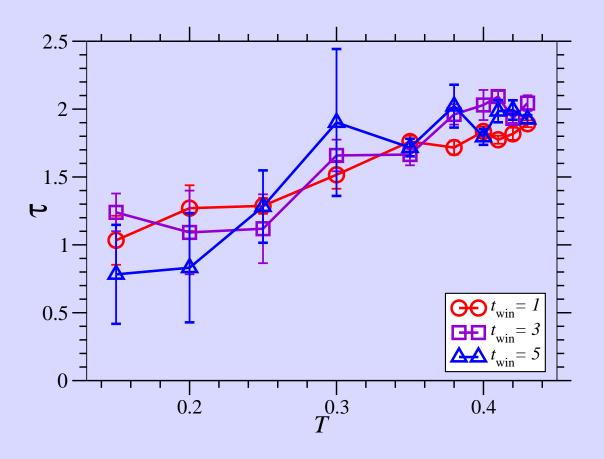
- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - Temporally Extended Cluster
- History Dependence
- Summary





Exponent $\tau(T)$

$$P(s) \sim s^{-\tau}$$



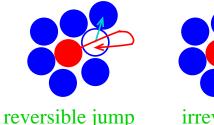
⇒ aging independent

Outline

- Jump Statistics
- Correlated Single Particle Jumps
 - Simultaneously Jumping Particles
 - ♦ Temporally Extended Cluster
- History Dependence
- Summary

Summary: Jump Statistics

reversible and irreversible jumps:



irreversible jump

At larger temperature relaxation:

- via more jumping particles
- via larger jumpsizes
- not via $\Delta t_{\rm b}$ (indep. of T)

History Production Runs

Summary: Jump Statistics

reversible and irreversible jumps:

At larger temperature relaxation:

via more jumping particles history dependent

via larger jumpsizes history independent

• not via Δt_b (indep. of T) history independent

Summary: Correlated Single Particle Jumps simultaneously jump. part. & extended clusters

- jumps are correlated spatially and temporally
- Distribution of Cluster Size: $P(s) \sim s^{-\tau}$
 - aging independent
 - ♦ for all temp. → self-organized criticality (critical behavior gets frozen in)
- string-like clusters

[Europhys. Lett. 76, 1130 (2006)]

Future/Present

- SiO₂
 (R. A. Bjorkquist & J. A. Roman & J. Horbach)
- granular media
 (T. Aspelmeier & A. Zippelius)

Acknowledgments

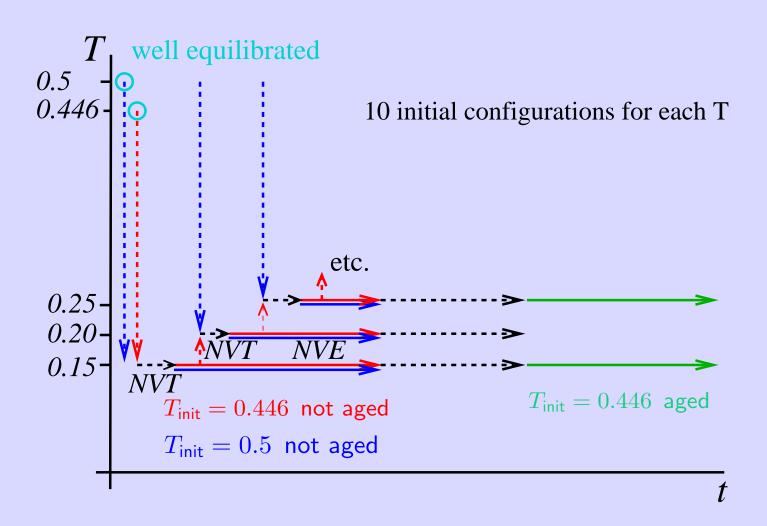
A. Zippelius, K. Binder, E. A. Baker, J. Horbach

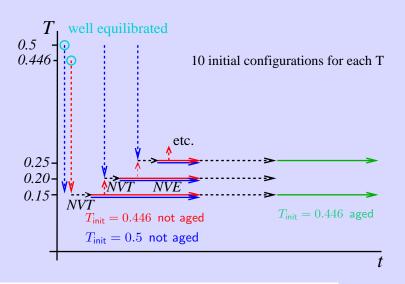
Support from Institute of Theoretical Physics, University Göttingen, SFB 262 and DFG Grant No. Zi 209/6-1

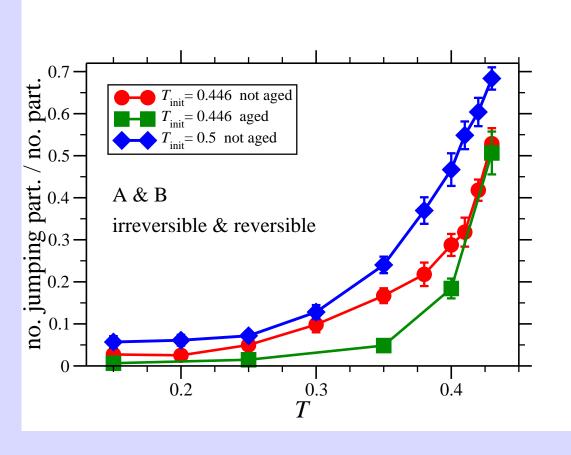
Time Scales

- one MD step: 0.02 time units, Ar: $3 \cdot 10^{-13} \text{s} \cdot 0.02 = 6 \text{fs}$
- one oscillation: 100 MD steps, 0.6 ps
- time a jump takes: 200 MD steps, 1.2 ps
- time resolution (time bin): 40000 MD steps, 240 ps
- time betw. successive jumps $\Delta t_{\rm b}$: $1.5 \cdot 10^6$ MD steps, 9 ns
- \bullet whole simulation run: $5 \cdot 10^6$ MD steps, 30 ns

History of Production Runs

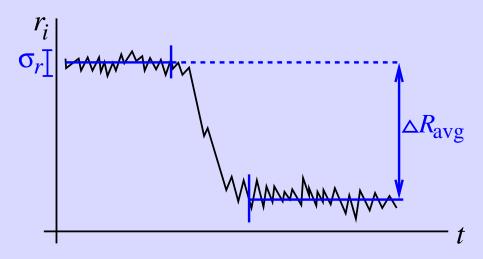


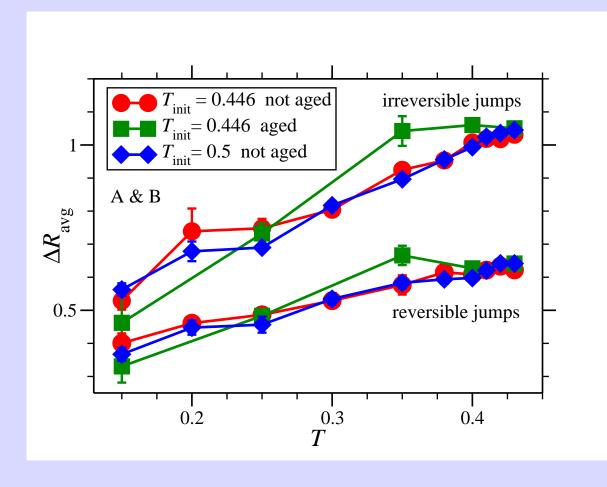




Number of Jump. Part.

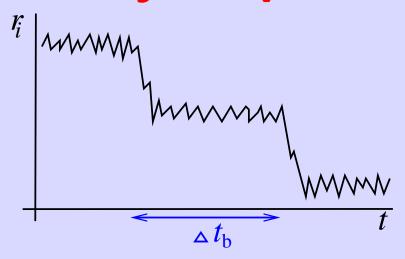
⇒ history dependent

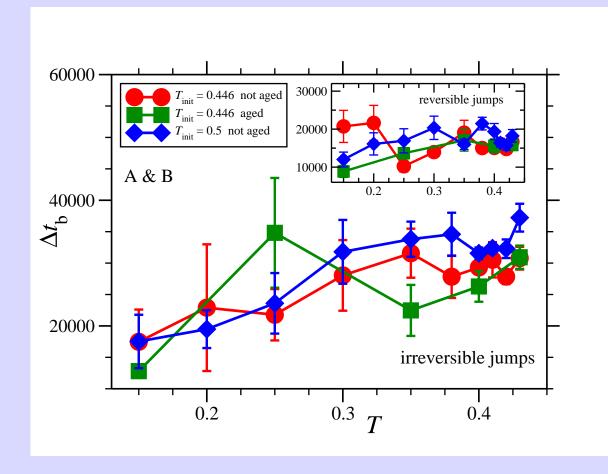




Jump Size

⇒ history independent



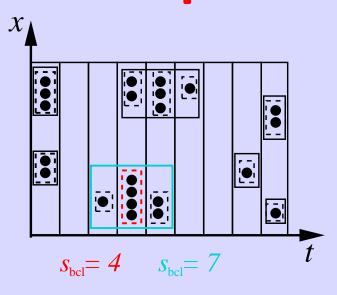


Time Between Jumps

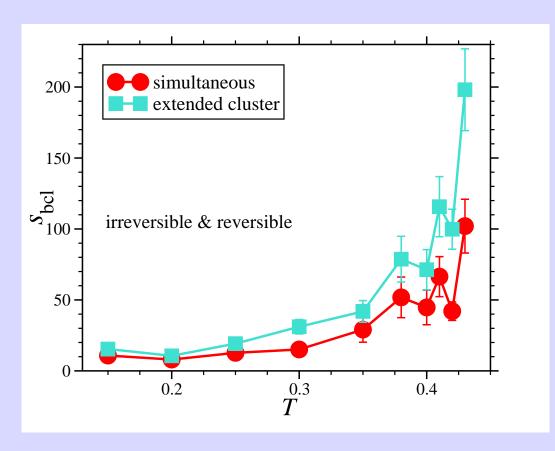
⇒ history independent

Summary: Jump Statistics

Most Cooperative Processes

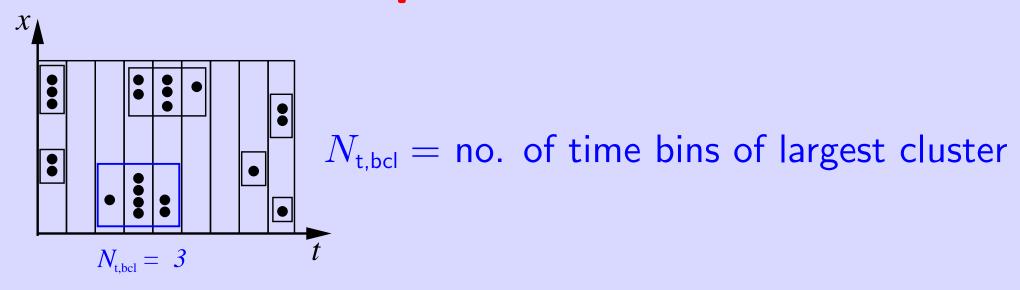


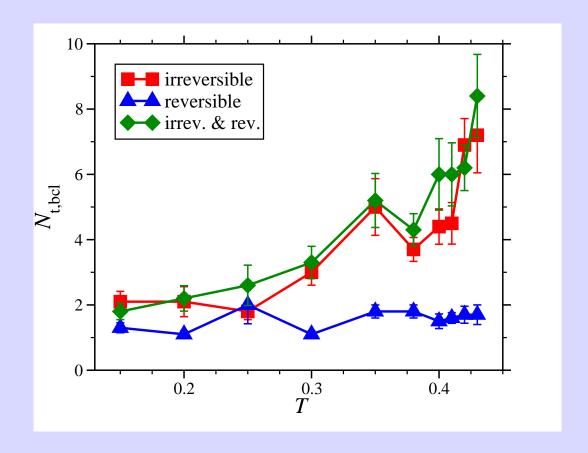
 $s_{bcl} = largest cluster size$



- highly correlated single particle jumps
- many particles

Most Cooperative Processes

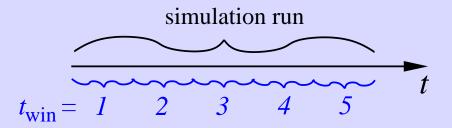




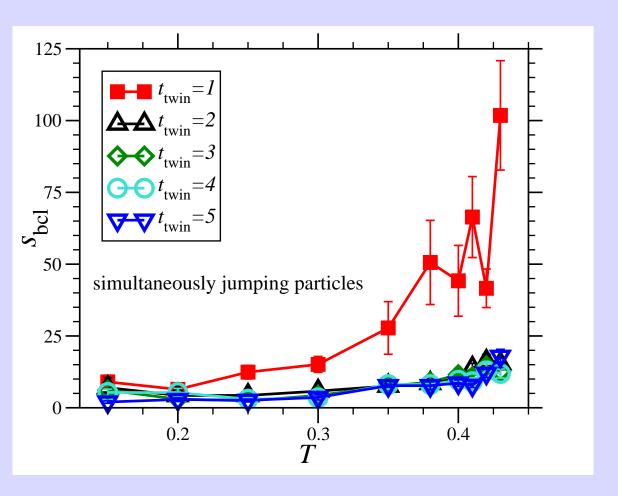
- highly correlated single particle jumps
- many particles
- many time bins

(maximum = 125)

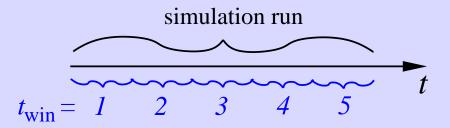
Γime Scales Extra



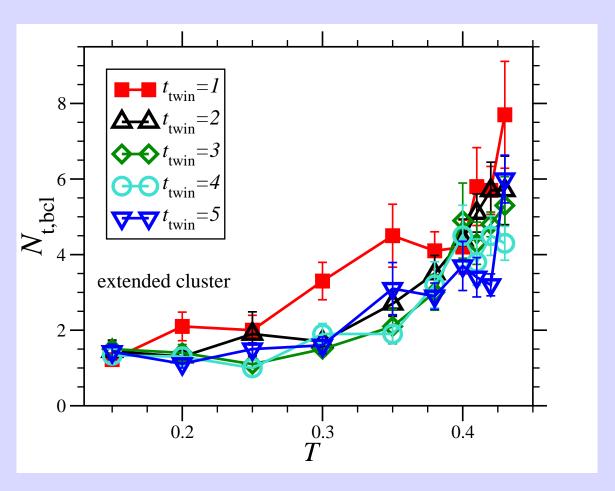
$s_{\rm bcl} =$ largest cluster size



- ⇒ aging dependent
- 1st t-window: highly cooperative
- 2nd 5th t-window:
 same, cooperative

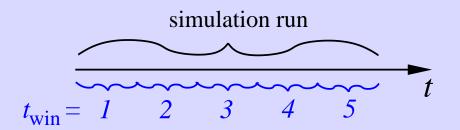


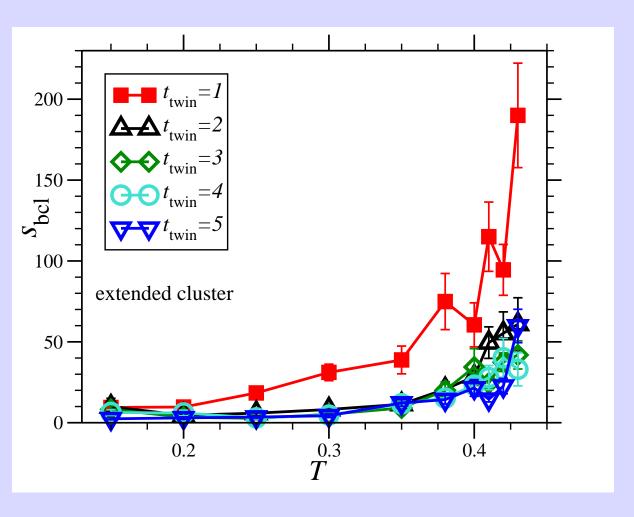
 $N_{\rm t,bcl} = {\rm no.~of~t}$ -bins of largest cluster



⇒ less aging dependent

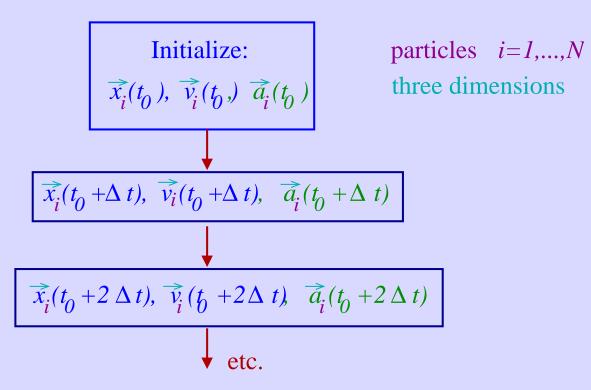
⇒ highly cooperative





- ⇒ aging dependent
- 1st t-window:
 highly cooperative
- 2nd 5th t-window:
 same, cooperative

Molecular Dynamics Simulation

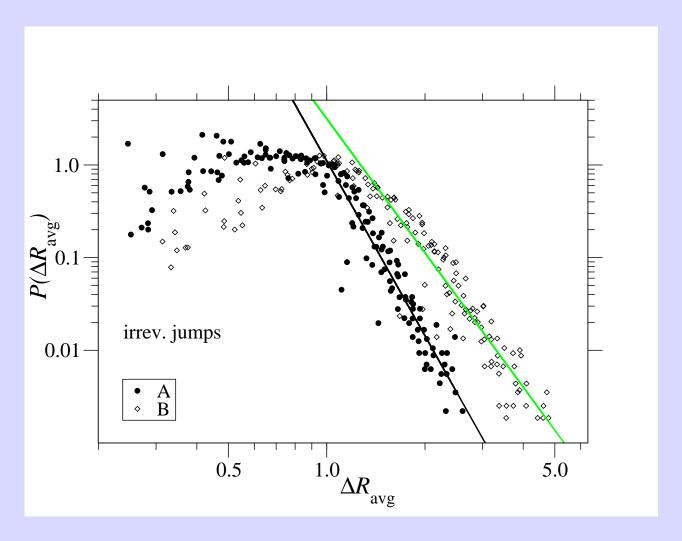


 \downarrow = Iteration Step:

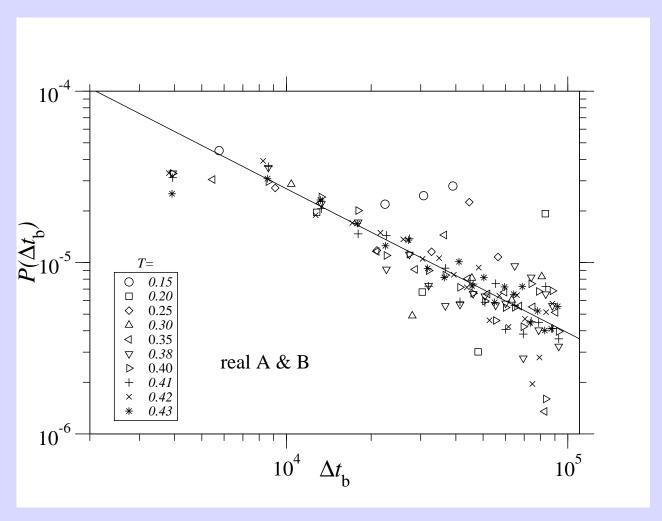
$$\overrightarrow{x_i}(t+\Delta t) = \overrightarrow{x_i}(t) + \overrightarrow{v_i}(t)\Delta t + \overrightarrow{a_i}(t)(\Delta t)^2/2$$

$$\overrightarrow{v_i}(t+\Delta t) = \overrightarrow{v_i}(t) + (\overrightarrow{a_i}(t) + \overrightarrow{a_i}(t+\Delta t)) \Delta t/2$$

$$\overrightarrow{a_i}(t) = \overrightarrow{F_i}(t)/m_i = -\overrightarrow{\nabla_i} U(t)/m_i$$



slopes -6.3 for A and -4.8 for B particles \longrightarrow subdiffusive



slopes -0.84 \longrightarrow subdiffusive