Dynamics of Thermal Frontal Polymerization

John A. Pojman Department of Chemistry & Biochemistry Ad Maiorem Poimanorum Gloriam

Where in the World is USM?

Hurricane Katrina: A Disaster?

Top Ten Advantages of Losing your House and all your belongings to Hurricane Katrina

- 10. You don't have to pay for electricity.
- 9. You don't have to pay for phone.
- 8. You don't have to cut the grass.
- 7. You don't have to cook something for the neighborhood "Night Out Against Crime"
- 6. You don't have to clean the house again.
- 5. You don't have to decide how to remodel the patio.
- 4. You don't have to decide what type of curtains to put in the living room.
- 3. You don't have to worry about gaining weight and not fitting into your 25 suits.
- 2. You will get a brand new house and new clothes courtesy of the Federal Government!
- 1. You don't have to cook Christmas dinner for the relatives.

NONLIN listserver

• over 500 participants in 15 countries

- exchange information on conferences
- ask questions from the experts

for information, send email to

john@pojman.com

or give me your business card

For More Information.... www.pojman.com

An Introduction to Nonlinear Chemical Dynamics

OSCILLATIONS, WAVES, PATTERNS, and CHAOS

Irving R. Epstein John A. Pojm<u>an</u> 869 ACS SYMPOSIUM SERIES 869 **Nonlinear Dynamics** in Polymeric Systems -CONG-MIYATA Nonlinear Dynamics in Polymeric Sy EDITED BY John A. Pojman and Qui Tran-Cong-Miyata

Pocket Protectors

The Fashion Accessory for the New Millennium

"I'm not just a collector, I am also a wearer."

John A. Pojman

The World's Largest Webseum of Pocket Protectors!

(featured on the Collectors Weekly Hall of Fame!)

www.pocketprotectors.info

The Pojman Pocket Protector Collection

551 and still growing!

If you want to contribute to the collection, contact <u>J. Pojman</u> about making a donation.

To visit Pojman www site.

Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Page 6 | Page 7 | Page 8 | Page 9 | Page 10 | Page 11 | Page 12 | Page 13 | Page 14

Ever-Clean Pocket Protector

University of Akron

Bagley College of Engineering

Pocketector

USM Chemistry

NEED PRIDE

Pojman Research Group

Push Pop candy

Technologies

What is Frontal Polymerization?

- **Isothermal frontal polymerization** (IFP) is the slow growth of a swelled polymer solid in contact with its monomer, aka, **interfacial gel polymerization**
- Thermal frontal polymerization is the coupling of the heat release of polymerization with the Arrhenius dependence of the reaction rate in an unstirred system, i.e., "liquid flame".
- Frontal Photopolymerization, a localized reaction driven by the flux of light.

Thermal Frontal Polymerization discovered in 1972 by Chechilo and Enikolopyan at Institute of Chemical Physics (Chernogolovka, Russia)

 used methyl methacrylate under high pressure (> 3500 atm)

Thermal FP: Analogous to Self-Propagating High Temperature Synthesis (SHS)

discovered by Merzhanov in 1967

0160505

Nickel-Aluminum gasless combustion

courtesy of Arvind Varma (Notre Dame)

Frontal Polymerization Scheme

Energy Source (UV or Thermal) Solid hot Polymer Reaction Heat Production Zone **Heat Diffusion** Liquid Monomer

Front Propagation

Basic Phenomenon: liquid/solid

methacrylic acid with 5% initiatior

1 cm

Polymer 200 °C

Monomer 25 °C

Sharp Temperature Gradients

Works with Solid Acrylamide

acrylamide/persulfate in Petri dish

Will propagate at 77 K!

What's it good for?

- Preparation of functionally-gradient materials
- "Cure on demand" -- a "superfast Bondo"
- Construction applications
- Unlimited depth of cure
- Studying nonlinear phenomena

Chemical Anchors

MORTAR COMPOSITION, CURABLE BY FRONTAL POLYMERIZATION, AND A METHOD FOR FASTENING TIE BARS

FIELD OF INVENTION

The object of the present invention is a mortar composition, which can be cured after thermal initiation by frontal polymerization, as well as a method for fastening tie bars, reinforcing steel or the like in solid substrates using this mortar composition.

There is therefore a need for a mortar composition, which has a very long pot life and the curing of which can be initiated selectively at a desired time. By these means, it became possible initially to provide a large number of boreholes with the mortar composition, subsequently to introduce and adjust the fastening elements and then to initiate the curing, as a result of which it becomes possible to attain an optimum and largely identical curing and, with that, largely identical pull-out strengths of the fastening elements that have been mounted.

hig: 1

HILTI GMBH

43% Clay Filler

TMPTA and Luperox 231

Frontal curing in porous stone

TMPTA + AIBN in pumice

Vicini, S.; **Mariani**, A.; Princi, E.; Bidali, S.; Pincin, S.; Fiori, S.; Pedemonte, E.; Brunetti, A. "Frontal Polymerization of Acrylic Monomers for the Consolidation of Stone," *Polymers for Advanced Technologies* **2005**, *16*, 293-298.

So easy, a five-year old can do it.

Development of a UV-initiated FP-Curable Wood Putty

- Current wood putties require many hours to cure
- Method to fill hole 1 cm diameter to a depth of 1.5 cm in 7 seconds.
- A putty was prepared that could be cured in 12 seconds.
- Cured composite could be sanded and stained.

Patent pending

Final Result

- A putty was prepared that could be cured in 12 seconds.
- Cured composite could be sanded and stained.

Interferences for Frontal Polymerization

convection

- periodic modes of propagation
 - "spin modes"

Two Cases for Convection

- liquid monomer converted to hot liquid polymer ("liquid/liquid" or thermoplastic)
- liquid monomer converted to hot solid polymer ("liquid/solid" or thermoset)

Liquid-Liquid: Rayleigh-Taylor Instability

Can destroy front with molten polymer

Simple Convection in Liquid/Solid Front

axisymmetric

antisymmetric

Linear Stability Analysis

Bowden, G.; Garbey, M.; Ilyashenko, V. M.; Pojman, J. A.; Solovyov, S.; Taik, A.; Volpert, V. "The Effect of Convection on a Propagating Front with a Solid Product: Comparison of Theory and Experiments," *J. Phys. Chem. B* **1997**, *101*, 678-686.

Liquid/Liquid Fronts

axisymmetric

antisymmetric

McCaughey, B.; Pojman, J. A.; Simmons, C.; Volpert, V. A. "The Effect of Convection on a Propagating Front with a Liquid Product: Comparison of Theory and Experiments,"*Chaos* **1998**, *8*, 520-529.

Self-Propagating High Temperature Synthesis

NiAl gasless combustion

planar propagation

spin mode

Theory for One-Step Reaction

• stability determined by effective E_a, initial and front temperature (for adiabatic system)

$$\alpha = \frac{E_a}{RT_{\text{max}}} (1 - \frac{T_0}{T_{\text{max}}}) < 8.4$$

Zeldovich Number

Spin Modes with Methacrylic Acid at $T_0 = 0$ °C

infrared

Spiral Patterns

multiple head

single head

Mechanical and optical properties are degraded

Are there bifurcation sequences in the macroscopic properties?

Bottom View

Fronts can propagate as a helix at room temperature

1.5 cm (i.d.) round

infrared imaging

visual

"Head-Doubling" Sequence

single

double

quadruple

Increasing amount of trifunctional monomer

Bifurcation parameter is the ratio of trifunctional to monofunctional monomer. Front temperature is unchanged.

Complex Behavior

aperiodic

A New Mode

pulsating symmetric mode predicted by Volpert et al. in 1992

Effect of Geometry: 4 Head

cylinder

"Zig-zag" in square tube

Effect of Convection on Spin Modes

solid front

- ascending fronts are stabilized

- descending fronts are destabilized

• liquid front

– descending fronts are stabilized

- ascending fronts are destabilized

predicted by Vitaly Volpert

Spin Modes disappear...

round

round

with high viscosity

Liquid/Liquid Case

descending

ascending

no spin mode

spin mode 5X real time

A little more polymer chemistry...

monoacrylate

triacrylate

A triacrylate forms a crosslinked network

Spin Modes at Room <u>Temperature?</u>

- energy of activation can be a function of conversion
- with crosslinked polymers, very high Ea at room temperature
 Eeff (kJ) HDDA E eff (kJ) TMPTA

Holy Grail for 16 years: Spherically-propagating front

- Viscous to avoid convection
- Bubble-free
- Support spin modes

Inside-out-curing

Diacrylate + silica gel + persulfate as bubble-free initiator

VOLUME 44 - NUMBER 4 - FEBRUARY 15, 2004

PUBLISHED IN 2 PARTS

SN 5867.42400

Articles published online in Wiley InterScience, 3 January 2006 through 23 January 2006

JOURNAL OF POLYMER SCIENCE

Polymer Chemistry

PART·A

MITSUO SAWAMOTO VIRGIL PERCEC CRAIG J. HAWKER KAREN L.WOOLEY E.W. MEIJER

Developed 'Spinning' Gel System

Gel formed from amine-catalyzed Michael addition of a trithiol to a triacrylate --2/3 of triacrylate remained unreacted.

Front propagated via a free-radical polymerization with a peroxide.

No bubbles because of gel.

Square-initiating source

Challenge for FP

- To create a system with low rate of reaction at room temperature but very high rate of reaction at adiabatic reaction temperature

 Need large ΙΔΗΙ AND large E_a
 - Free-radical systems work well because of large E_a of peroxides or nitriles

New Approach

• Physically separate the reactive components

- Use microencapsulation as the method
- Breaking of capsules provides the thermal activation.

FP in Spatially-Modulated Media

• Motivation:

- Fillers will not always be uniformly distributed

- Hole to be filled may be irregular

• Simplest case is bifurcated domain

– Snell's law

• "Dick Cheney" experiment

Snell's Law

Snell's law states that a front propagating at the interface of two regions in which the wave has a different velocity in each region will refract.

 $\sin \phi_i / \sin \phi_r = v_i / v_r$

Snell's Law with BZ Waves

$$\frac{\sin \phi_i}{\sin \phi_r} = \frac{v_i}{v_r}$$

Zhabotinsky, A. M.; Eager, M. D.; Epstein, I. R. Phys. Rev. Lett. 1993, 71, 1526-1529.

Pojman, J. A.; Viner, V.; Binici, B.; Lavergne, S.; Winsper, M.; Golovaty, D.; Gross, L. "Snell's Law of Refraction Observed in Thermal Frontal Polymerization," *Chaos* **2007**, *17*, 033125.

Method of Hwang & Halpin-Healy

 $x = [d(n^2 - 1)\tan\alpha + R \sin\alpha]/n^2,$

 $y = [(R-d \sec \alpha)\sqrt{n^2 - \sin^2 \alpha}]/n^2$,

 $n = v_{incident} / v_{refracted} > 1$

Hwang, S.-C.; Halpin-Healy, T. "Chemical Wave Refraction Phenomena," *Phys. Rev. E* **1996**, *54*, 3009-3012.

Reasonable Agreement

Dick Cheney Experiment

What if Vice President Cheney studied frontal polymerization?

7X real time

Triacrylate + clay + buckshot

Frontal Velocity (cm/min) vs. Volume Fraction of Shot (%)

Current Challenges

- Eliminate smoking by lowering front temperature
- Front in thin layers

Challenge for FP

- To create a system with low rate of reaction at room temperature but very high rate of reaction at adiabatic reaction temperature

 Need large ΙΔΗΙ AND large E_a
 - Free-radical systems work well because of large E_a of peroxides or nitriles

New Approach

• Physically separate the reactive components

- Use microencapsulation as the method
- Breaking of capsules provides the thermal activation.

Microencapsulation of initiator (150μ) for improved pot life

Encapsulated initiator

McFarland, B.; Popwell, S.; Pojman, J. A. "Free-Radical Frontal Polymerization with a Microencapsulated Initiator,"*Macromolecules* **2004**, *37*, 6670 - 6672. McFarland, B.; Popwell, S.; Pojman, J. A. "Free-Radical Frontal Polymerization with a Microencapsulated Initiator: Characterization of Microcapsules and Their Effect on Pot Life, Front Velocity and Mechanical Properties," *Macromolecules* **2006**, *39*, 53-63.

J.A Pojman, B. McFarland, S. Popwell Patent Pending

Cumene Hydroperoxide Concentration (% v/v)

Microencapsulated Diacrylate & Microencapsulated Initiator

Pack free-flowing powders and then ignite front

Patent pending

Effect of Encapsulated initiators

- The resulting polymer is stronger with encapsulated initiators than with dissolved initiators.
- NO spin modes.
- Not because of lower front temperature.

Open Questions

- What are the necessary conditions for frontal polymerization?
 - Enthalpy
 - Functionality
 - Ea for reaction
 - Reactor geometry
 - Filler loading
- What are the necessary conditions for initiation?
 - Light
 - Input of heat
- How are the frontal dynamics affected by changes in parameters during polymerization?
- How is stability affected by randomly-distributed components?

Practical Challenges

Can frontal systems be prepared that propagate with temperature < 100 °C?
Thin films?
