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Overview

• Symbolic Dynamics

• Extension to Coupled Map Lattice

• Local Symbolic Dynamics

• Controlling Spatiotemporal Chaos

• A Flow Example



Symbolic Dynamics of Logistic Map
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Extension to Coupled Map Lattices
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Local Symbolic Dynamics
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Constructing Global States
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Targeting States 
of Spatiotemporal Chaos
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Append the desired target symbol sequence onto the end of the current symbolic 
state. Mapping back to state space gives us the connecting orbit.

Target State



Controlling a 
Complex Orbit

• N=726,     = 0.1 logistic CML

• At t = 50 the CML is steered onto 
target orbit. White pixels = ‘1’, 
black ‘0’.

• An m=3, n=6 LUT is used to find 
the required CML site values

• Controller pushes the CML state 
onto the desired orbit at each 
iteration

• Mean control signal is 0.007 
(0.7% of the dynamic range of 
each element.)
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High-Dimensional Flow
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The return map for the 
uncoupled (k = 0) oscillator 
has a unimodal shape.

Ansatz: Return map for k >0 
described by a coupled 
lattice of unimodal maps

Consider the driven reaction-diffusion system:

Stroboscopic 
return map
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• 1000 returns of ui (t) collected

• We estimate up = -0.12 by finding 
sup{ ui (t) } and taking prior iterate at 
that location

•Symbolize: si (t) = 1 if ui (t) > up , 0 
otherwise

• Compile m = 3 LUT, compute E(n)

• Error less than 1% at n=11

The local symbolic model performs as well for this case of ODEs 
as it does for the CML. 

High-Dimensional Flow
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Conclusion

• Systems that can be modeled as diffusively coupled lattices of 
unimodal maps are likely to have a compact description in terms of 
local symbolic models. 

• For these systems chaos control is straightforward and novel global 
states can be predicted and targeted based on previously measured 
data. 

• The approach discussed here is easily generalized to multi- 
dimensional lattices and to 1-d maps of more than two symbols. 

• We think it likely that any network of small in-degree is a good 
candidate for reduction to a local symbolic model.
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