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systems

• Control and efficient forcing as an optimization problem

• Derivation of equations of motion of optimal control
• Explicit examples

• Coupled shift maps with one forced degree of freedom
• Coupled shift maps with two forced degrees of freedom
• Forced Henon map with delay

• Current work
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Time-discrete maps used to model real-world systems

Examples (preaching to the choir):

• Traffic activity in computer networks
Ashwin, S., Prabhakar, A. In TENCON 2003., vol. 1, p. 338 (2003)

• Dynamics of high-speed milling tools
Szalai, R., Stepan, G., Hogan, S.J. Chaos 14(4), 1069 (2004)

• Host-parasitoid population models
e.g. Murdoch, W.W., Reeve, J.D. Oikos 50(1), 137 (1987)
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Forcing and control

In some cases it may be desirable to force a map efficiently.
Example: using parasitoids to control pest insect population

Image courtesy Galveston County Master Gardener Association, Inc
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Deriving optimal forcing functions
• Treat efficient forcing as an optimization problem:

• Given the iterated map dynamics

x(n+1) = f
(

x(n)
)

+ F(n),

• We define the response R2 as the deviation from the
unperturbed dynamics:

R2
≡

(

x(N)
−y(N)

)2

where y(n+1) = f
(

y(n)
)

with y(0) = x(0).

• Constraint: fixed forcing magnitude

F2 =
N−1

∑
n=0

(

F(n)
)2
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General case: not all degrees of freedom are forced

• d total degrees of freedom

• x1, . . . ,xdu are unforced

• xdu+1, . . . ,xd are forced

• F(n)
i = 0 for i = 1, . . . ,du and n = 0,1, . . . ,N −1.

• If du = 0 then the problem reduces to the simpler case
where all degrees of freedom are forced. [Foster, G., Hübler,

A.W., Dahmen, K. Phys. Rev. E 75, 036212 (2007) ]
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L =
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2
+

N−1

∑
n=0

{

µ(n)
[

x(n+1)
− f
(

x(n)
)

−F(n)
]

−

λ
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)2

−F2
]

−λ
du

∑
j=1

γ(n)
j F(n)

j

}

,



Introduction Deriving optimal forcing Examples Conclusions

We use the calculus of variations with Lagrange function L:

L =
R2

2
+

N−1

∑
n=0

{

µ(n)
[

x(n+1)
− f
(

x(n)
)

−F(n)
]

−

λ
2

[

(

F(n)
)2

−F2
]

−λ
du

∑
j=1

γ(n)
j F(n)

j

}

,

Lagrange multipliers:

• λ
• γ(n)

1 , . . . ,γ(n)
du

• µ(n)
1 ,µ(n)

2 , . . . ,µ(n)
d



Introduction Deriving optimal forcing Examples Conclusions

We use the calculus of variations with Lagrange function L:

L =
R2

2
+

N−1

∑
n=0

{

µ(n)
[

x(n+1)
− f
(

x(n)
)

−F(n)
]

−

λ
2

[

(

F(n)
)2

−F2
]

−λ
du

∑
j=1

γ(n)
j F(n)

j

}

,

Lagrange multipliers:

• λ
• γ(n)

1 , . . . ,γ(n)
du

• µ(n)
1 ,µ(n)

2 , . . . ,µ(n)
d

We seek stationary points of L corresponding to ∂L/∂x(n)
i = 0

and ∂L/∂F(n)
i = 0 for all n and i = 1, . . . ,d.



Introduction Deriving optimal forcing Examples Conclusions

We define

Γ(n)
≡

du

∑
j=1

γ(n)
j êj,
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We define

Γ(n)
≡

du

∑
j=1

γ(n)
j êj,

where êj is the unit basis vector in the direction of xj, and

G(n)
≡ F(n) + Γ(n).

Then we eliminate µ(n)
1 ,µ(n)

2 , . . . ,µ(n)
d to obtain equations of

motion:
(

J(n+1)
)T G(n+1) = G(n)

x(N)
−y(N) = λG(N−1).
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Weak forcing

In the case of weak forcing, we Taylor expand the equation of
state for small F and obtain this relation:

(

J(n+1)
)TG(n+1) = G(n),

MG(N−1)
−Ω = λG(N−1),

where I is the identity matrix,

M ≡ I +
N−1

∑
n=1

J(N−1)
· · ·J(N−n)

(

J(N−n)
)T

· · ·

(

J(N−1)
)T

,

Ω ≡ Γ(N−1) + J(N−1)Γ(N−2) + · · ·+
(

J(N−1)
· · ·J(1)

)

Γ(0).

We can solve this system to determine the optimal forcing for
any time!
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Meaning of Lagrange multipliers

For weak forcing are able to show:

• λ = R2

F2 is the net forcing efficiency

•

{

γ(n)
1 , . . .γ(n)

du

}

are the effective forcing experienced by the

degrees of freedom j for which F(n)
j = 0

• µ(n) = −
R2

F2 G(n) is a product of other Lagrange multipliers
and can be eliminated.
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Example: coupled shift maps

We consider the mapping function for coupled shift maps:
(

x(n+1)
1

x(n+1)
2

)

=

(

mod(ax(n)
1 + kx(n)

2 )

mod(ax(n)
2 + kx(n)

1 )

)

+

(

0

F(n)
2

)

Only x2 is forced so du = 1 and F(n)
1 = 0 for all n.
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For N = 2 we can solve for the Lagrange multipliers and the
optimal forcing function:

F(0)
2 = −

(

1−a2
− k2+ β

)

F(1)
2 /2a,

F(1)
2 = 2aF/

√

4a2 +
(

1−a2
− k2 + β

)2
,
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For N = 2 we can solve for the Lagrange multipliers and the
optimal forcing function:

F(0)
2 = −

(

1−a2
− k2+ β

)

F(1)
2 /2a,

F(1)
2 = 2aF/

√

4a2 +
(

1−a2
− k2 + β

)2
,

γ(0) = −

(

1+ a2
−3k2+ β

)

F(1)
2 /2k,

γ(1) = −

(

1+ a2
− k2+ β

)

F(1)
2 /2ak,

λ =
(

1+ a2 + k2
−β

)

/2 =
R2

F2 .

where
β ≡

√

(1+ a2)2 +2k2(a2
−1)+ k4.
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We can compare this to the case where both x1 and x2 are
forced.

F̃(0)
1 = −

(

a+ k
)2

F̃(1)
2 , F̃(0)

2 =
(

a+ k
)2

F̃(1)
2 ,

F̃(1)
1 = F̃(1)

2 , F̃(1)
2 =

F
√

2+2
(

a+ k
)2

,
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We can compare this to the case where both x1 and x2 are
forced.

F̃(0)
1 = −

(

a+ k
)2

F̃(1)
2 , F̃(0)

2 =
(

a+ k
)2

F̃(1)
2 ,

F̃(1)
1 = F̃(1)

2 , F̃(1)
2 =

F
√

2+2
(

a+ k
)2

,

λ̃ = 1+
(

a+ k
)2

=
R̃2

F2 .
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The ratio of final responses

Ξ2
≡

R̃2

R2 =
λ̃
λ

=
2
[

1+
(

a+ k
)2]

1+ a2 + k2
−β
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The ratio of final responses

Ξ2
≡

R̃2

R2 =
λ̃
λ

=
2
[

1+
(

a+ k
)2]

1+ a2 + k2
−β

is plotted here for different values of the parameter a.

0 205 10 15

a

0.5

1

1.5

Ξ
2

F = 0.001and k = 0.3000.
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One test of optimal forcing

(

x(n+1)
1

x(n+1)
2

)

=

(

mod(a0x(n)
1 + kx(n)

2 )

mod(a0x(n)
2 + kx(n)

1 )

)

+

(

0

F(n)
2 (a)

)

where

F(0)
2 (a) = −

(

1−a2
− k2+ β

)

F(1)
2 /2a,

F(1)
2 (a) = 2aF/

√

4a2 +
(

1−a2
− k2 + β

)2
,

Claim: Unless a = a0, F(n)
2 (a) is NOT the optimal forcing function

for this system. Thus the response R2

F2 as a function of a will be
maximum at a = a0.
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0 51 2 3 4

a

1

1.5

2

2.5

R
2

F
2

F = 0.001, a0 = 1.1000, k = 0.3000, x(0)
1 = x(0)

2 = 0.1000. Solid
line: analytical result; triangles: numerical calculation. This is
not a sufficient condition that we have found the optimal forcing
function but it is a necessary one.
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The forced Hénon map with delay

x(n+1) = 1−a
(

x(n)
)2

+ cbx(n−1) + F(n)

can be written as the equivalent two-dimensional system:
(

x(n+1)
1

x(n+1)
2

)

=

(

bx(n)
2

1−a
(

x(n)
2

)2
+ cx(n)

1

)

+

(

0

F(n)
2
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Example: one dimensional Hénon map with delay

The forced Hénon map with delay

x(n+1) = 1−a
(

x(n)
)2

+ cbx(n−1) + F(n)

can be written as the equivalent two-dimensional system:
(

x(n+1)
1

x(n+1)
2

)

=

(

bx(n)
2

1−a
(

x(n)
2

)2
+ cx(n)

1

)

+

(

0

F(n)
2

)

In this case we can only force 1 degree of freedom!
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J(n+1)
)TG(n+1) = G(n),

MG(N−1)
−Ω = λG(N−1),

For N = 2 the matrix M is given by
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2

−2abx(1)
2 1+ c2 +4a2
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2
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(

J(n+1)
)TG(n+1) = G(n),

MG(N−1)
−Ω = λG(N−1),

For N = 2 the matrix M is given by

M =

(

1+ b2
−2abx(1)

2

−2abx(1)
2 1+ c2 +4a2

(

x(1)
2

)2

)

,

Approximation: To obtain an analytical solution we use

x(1)
2 ≈ y(1)

2 = 1+ cx(0)
1 −a

[

x(0)
2

]2
.

We are also able to solve the exact system numerically.
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Approximate solution is relatively simple:

F(0)
2 =

(

1−b2
−α2

−β
)

F(1)
2 /2α ,

F(1)
2 = 2αF/

√

4α2 +
(

1−b2
−α2 + β

)2
.
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Approximate solution is relatively simple:

F(0)
2 =

(

1−b2
−α2

−β
)

F(1)
2 /2α ,

F(1)
2 = 2αF/

√

4α2 +
(

1−b2
−α2 + β

)2
.

λ =
(

1+ b2 + α2+ β
)

/2 =
R2

F2 ,

γ(0) = F(1)
2 ,

γ(1) =
(

1−b2+ α2
−β

)

F(1)
2 /2bα ,

where

α ≡ 2a
[

1+ cx(0)
1 −a

(

x(0)
2

)2
]

,

β ≡

√

b4 +2b2
(

α2
−1
)

+
(

1+ α2
)2

.
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Now the same test as for the coupled shift maps:
(

x(n+1)
1

x(n+1)
2

)

=

(

bx(n)
2

1−a0
(

x(n)
2

)2
+ cx(n)

1

)

+

(

0

F(n)
2 (a)

)
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Now the same test as for the coupled shift maps:
(

x(n+1)
1

x(n+1)
2

)

=

(

bx(n)
2

1−a0
(

x(n)
2

)2
+ cx(n)

1

)

+

(

0

F(n)
2 (a)

)

where F(n)
2 (a) is the result from the previous page or the result

of calculating the exact solution numerically.
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F = 0.001, a0 = 1.1000, k = 0.3000, and x(0)
1 = x(0)

2 = 0.1000. Solid
line: approximate analytical result; triangles: approximate
numerical calculation; boxes: exact numerical calculation.
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Conclusions

• We determine the optimal forcing function of a
time-discrete map, subject to several constraints.

• We demonstrated the method with two examples.

• Forcing only one degree of freedom in a coupled shift map
system gives nearly as large a response as forcing both
degrees of freedom.

• This method has applications any time a system accurately
described by a time-discrete map is to be forced efficiently.
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• We are finishing the extension of this method to
time-continuous system [a generalization of Wargitsch, C.,

Hübler, A.W., Phys. Rev. E 51, 1508 (1995)].
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Current work

• We are finishing the extension of this method to
time-continuous system [a generalization of Wargitsch, C.,

Hübler, A.W., Phys. Rev. E 51, 1508 (1995)].

• Experimental applications beyond numerical simulations.
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