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Time-discrete maps used to model real-world systems

Conclusions

Examples (preaching to the choir):
e Traffic activity in computer networks
Ashwin, S., Prabhakar, A. In TENCON 2003., vol. 1, p. 338 (2003)
¢ Dynamics of high-speed milling tools
Szalai, R., Stepan, G., Hogan, S.J. Chaos 14(4), 1069 (2004)

¢ Host-parasitoid population models
e.g. Murdoch, W.W., Reeve, J.D. Oikos 50(1), 137 (1987)
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Forcing and control

Conclusions

In some cases it may be desirable to force a map efficiently.
Example: using parasitoids to control pest insect population

Image courtesy Galveston County Master Gardener Association, Inc
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Deriving optimal forcing functions

Treat efficient forcing as an optimization problem:

Given the iterated map dynamics

XD — f (x4 FO),

We define the response R? as the deviation from the
unperturbed dynamics:

R = (xV _y(N>)2

where y(™) = f(y() with y(© = x©.

Constraint: fixed forcing magnitude

F2= 20 (FM)?
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General case: not all degrees of freedom are forced

d total degrees of freedom

® Xi,...,Xq, are unforced

® Xd,+1,---,Xq are forced

F" =0fori=1,...,dyandn=0,1,... N—1.

If dy = 0 then the problem reduces to the simpler case

where all degrees of freedom are forced. [Foster, G., Hiibler,
AW., Dahmen, K. Phys. Rev. E 75, 036212 (2007) ]
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:_+ Z;{ [n+1 f(x(n))_F(n)}

A

-5 {(Fm))z _ |:2] iy i %(n),:j(n)}
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We use the calculus of variations with Lagrange function L:
= _+ Z}{ [ (n+1) f(x(n)) _ F(n)}
du
_ 2T (EM2 g2 _ ) y(”)F.(”)},
2 {( ) ] j; (I

Lagrange multipliers:

e A

° y(ln),,yé:)

T AN T LRI

We seek stationary points of L corresponding to dL/dxi(”) =0
and dL/aF"” =0foralinandi=1,...,d.
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We define

where § is the unit basis vector in the direction of x;, and
G =FM 4™,

Then we eliminate p{", 1", ..., u{"” to obtain equations of
motion:

(J(n+1))TG(n+1) — G(n)

Conclusions
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state for small F and obtain this relation:
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Weak forcing

In the case of weak forcing, we Taylor expand the equation of
state for small F and obtain this relation:

(J(n+1))TG(n+1) — G(n)

9

MGN-D _ Q= AGN-D,

where | is the identity matrix,

M= _i_Nil\](N*l) ... J(N=n) (\](N*n))T... (\](Nfl))Tj
n=1

Q=rN-1 4 gN-Jp(N=2) (\](Nfl)...\](l))r(o)'

We can solve this system to determine the optimal forcing for
any time!
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Meaning of Lagrange multipliers

For weak forcing are able to show:

o A= g is the net forcing efficiency

. {y<”),...yé"u')} are the effective forcing experienced by the
degrees of freedom j for which Fj(”) =0

o uM = —E—iG(”) is a product of other Lagrange multipliers
and can be eliminated.
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Example: coupled shift maps

We consider the mapping function for coupled shift maps:

"\ _ [ mod(aq” +kg) | (0
X(2n+l) mod(ax(zn)+kx(1”)) Fé”)

)

Only x is forced so d, = 1 and Fﬁ” =0 for all n.

Conclusions
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FIY = 2aF /422 + (1— 22— 12+ B)?,
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For N = 2 we can solve for the Lagrange multipliers and the
optimal forcing function:

FY = —(1—a2— K2+ B)FY /24

FU = 2aF/\/4a2+ (1-a2—Kk2+B)?,

VO = — (1422 32+ B)FSY /2,
YW = — (1422 - K+ B)FY /2ak,

RZ
A=(1+a+K-p)/2= =

where

B=1/(1+a2)2+2K2(a 1) +K-
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forced.
FO = —(a+k)’EW, EQ — (a+K)%FEW,
= ~ ~ F
Fgl) :Fél), Fél) _ 7



Introduction Deriving optimal forcing Examples Conclusions
00000

00000

We can compare this to the case where both x; and x, are

forced.
FO = —(a+k)’EW, EQ — (a+K)%FEW,
= ~ ~ F
Fgl) _ Fél), Fél) _ ’
2+2(a+k)?
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The ratio of final responses

A 2[1+(a+k)’]
A 14+a2+ke-p

R
R2
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The ratio of final responses

o R A 2[1+ (a+k)?]
A

TR 1+a2+k2—pB

is plotted here for different values of the parameter a.

1.5

53]

0.5

F =0.001and k = 0.3000Q

Conclusions
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One test of optimal forcing

X"\ [ mod(aox)” + k) N 0
Xy mod(agxy” + ko) Y (a)
where

F(a) = —(1— a2 — K2+ B)Fy” /2a,

FP(a) = 2aF/\/4a2+ (1-a2—Kk2+B)?,
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One test of optimal forcing

X _ mod(aox\” + kx") N 0
Xy mod(agxy” + ko) Y (a)

F(a) = —(1— a2 — K2+ B)Fy” /2a,

Fgl)(a) = 2aF/\/4a2+ (1-a2— k2+[3)2,

where

Claim: Unless a= ay, Fé”)(a) is NOT the optimal forcing function

for this system. Thus the response g as a function of a will be
maximum at a= ag.
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F =0.001, a = 1.100Q k = 0.3000 x'* = x{¥ = 0.100Q Solid
line: analytical result; triangles: numerical calculation. This is
not a sufficient condition that we have found the optimal forcing
function but it is a necessary one.
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The forced Hénon map with delay

XM — 1 a(xM)? 4 cox" Y 4 F M
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Example: one dimensional HEnon map with delay

The forced Hénon map with delay
XM =1 a(x(”))2 +cbx("Y 4 F(

can be written as the equivalent two-dimensional system:

X:(Ln+1) B bX(Zn) N 0
X(2n+1) 1_ a(x(zn))z n cx(ln) Fén)

In this case we can only force 1 degree of freedom!
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9

MGN-D Q= rcN-D

(J(n+1))TG(n+1) — G(n)

For N = 2 the matrix M is given by

B 1+ b2 —2abxV
—2abd) 14244252 )
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9

MGN-D Q= rcN-D

(J(n+1))TG(n+l) — G(I’l)

For N = 2 the matrix M is given by

B 1+ b2 —2abxV
—2abd) 14244252 )

Approximation: To obtain an analytical solution we use
XV~ yi = 14 od? - a[x(zo)] 2

We are also able to solve the exact system numerically.
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Approximate solution is relatively simple:
FO = (1-0*—a?—B)FYY )2a,

S 2aF/\/40r?+ (1-p2—a2+B)°.
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Approximate solution is relatively simple:
FO = (1-0*—a?—B)FYY )2a,

o = ZaF/\/40r?+ (1-pP—a?+pB)°.

R?
A= 1+ +a?+B)/2= =2
yO =Fy,
Y = (1-b*+a?—B)FY /2ba,

where

o= 2a[1+ ox” — a(x(zo))z] ,

B= \/b4+2b2(a2—1) +(1+a2)?
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Now the same test as for the coupled shift maps:

X:(L n+1) B bX(Z n) N 0
Xy 1—ap (") +ox FI(a)

where Fé”)(a) is the result from the previous page or the result

of calculating the exact solution numerically.
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Conclusions

e We determine the optimal forcing function of a
time-discrete map, subject to several constraints.

e We demonstrated the method with two examples.

¢ Forcing only one degree of freedom in a coupled shift map
system gives nearly as large a response as forcing both
degrees of freedom.

¢ This method has applications any time a system accurately
described by a time-discrete map is to be forced efficiently.
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time-continuous system [a generalization of wargitsch, C.,
Hubler, AW., Phys. Rev. E 51, 1508 (1995)].
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Current work

e We are finishing the extension of this method to
time-continuous system [a generalization of wargitsch, C.,
Hubler, AW., Phys. Rev. E 51, 1508 (1995)].

e Experimental applications beyond numerical simulations.
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