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•

 

There is much interest in utilizing HCCI combustion in transportation engines for 
reducing nitrogen oxide (NOx) emissions and increasing fuel efficiency

•

 

HCCI is fundamentally different from conventional combustion
o

 

Volumetric reaction rather than localized flame front
o

 

Only occurs for limited range of temperature and chemical species concentrations

Background / Motivation:

Spark-ignition
•

 

Pre-mixed fuel-air charge
•

 

Spark ignition
•

 

Flame front propagates 
through pre-mixed charge

Diesel
•

 

Fuel injected into compressed 
fresh-air charge

•

 

Hot air ignites fuel
•

 

Relatively stationary diffusion 
flames

HCCI
•

 

Pre-mixed, pre-heated fuel-air 
charge

•

 

Compression ignition
•

 

Uniform, spontaneous 
combustion without flame front

†

 

Graphics adapted from GM
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Motivation:
•

 

In today's engines, stable HCCI only possible for limited range of speed 
and load 

•

 

Practical application requires two key developments:
o

 

Rapid switching between HCCI and spark-ignition (SI) combustion 
o

 

Expansion of HCCI operating envelope via feedback stabilization

Study Objectives:
•

 

Improve understanding of dynamic combustion instability associated 
with HCCI 

•

 

Develop simplified combustion models for rapid simulation, 
diagnostics, and controls
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Engineering Context: The 4-Stroke IC Engine

•

 

In conventional gasoline engines, a spark plug ignites combustion
•

 

HCCI requires residual gas for preheating but no spark plug
•

 

For HCCI, typically >50% of gas in cylinder is residual
•

 

High residual creates strong cycle-to-cycle coupling

Intake Compression Power Exhaust

Residual

Fuel + Air Exhaust

Residual

Ignition Burnout

4-Stroke Cycle
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'Skeletal' n-heptane

 

mechanism by Liu et al. (2004)†:  43 species, 185 reactions

No. Reaction 
1f O2 + H→OH +O 
2f H2 + O→OH +H 
3f H2 + OH→H2O +H 
4f 2OH→H2O +O 
5f 2H + M →H2 + M 
6f 2O + M →O2 + M 
7f H + OH + M →H2O + M 
8f H + O2 + M →HO2 + M 
9f HO2 + H→2OH 
10f

 

HO2 + H→H2 + O2 
11f HO2 + H→H2O +O 
12f   HO2 + O→OH + O2 
13f HO2 + OH→H2O + O2 
14f

 

2HO2 →H2O2 + O2 
15f 2OH + M →H2O2 + M 
16f H2O2 + OH→H2O + HO2 
17f CO + OH→CO2 +H 
18f CO + HO2 →CO2 + OH 
19f CO + O + M →CO2 + M 
20 CH + O2 →HCO +O 
21 CH + CO2 →HCO + CO 
22f

 

CH + H2O→CH2OH 
23f HCO + M →CO + H + M 
24f HCO + O2 →CO + HO2 
25f 3-CH2 + H→CH + H2 
26f 23-CH2 →C2H2 + H2 
27f 3-CH2 + CH3 →C2H4 +H 
28f 3-CH2 + O2 →CO + OH +H 
29f 3-CH2 + O2 →CO2 + H2 
30f   1-CH2 + M →3-CH2 + M

No.   Reaction 
31f   1-CH2 + O2 →CO + OH +H 
32f   1-CH2 + H2 →CH3 +H 
33f    CH2O + M →HCO + H + M 
34f    CH2O + H→HCO + H2 
35f    CH2O + O→HCO + OH 
36f    CH2O + OH→HCO + H2O 
37f    CH2O + HO2 →HCO + H2O2 
38f    CH3 + O→CH2O +H
39f    CH3 + H→CH4 
40     CH3 + OH→CH3O +H 
41     CH3 + O2 →CH2O + OH
42f    CH3 + HO2 →CH3O + OH
43f    CH3 + HO2 →CH4 + O2 
44     2CH3 →C2H4 + H2 
45f    2CH3 →C2H6 
46f    CH3O + M →CH2O + H + M 
47f    CH3O + H→CH2O + H2
48f    CH3O + O2 →CH2O + HO2 
49f    CH2OH + M →CH2O + H + M 
50f    CH2OH + H→CH2O + H2 
51f    CH2OH + O2 →CH2O + HO2 
52f    CH4 + H→H2 + CH3 
53f    CH4 + OH→H2O + CH3 
54f    HCCO + H→3-CH2 + CO 
55     HCCO + O→2CO +H 
56f    C2H2 + O2 →HCCO + OH 
57f    C2H2 + O→3-CH2 + CO 
58f    C2H2 + O→HCCO +H 
59f    C2H3 →C2H2 + H 
60     C2H3 + O2 →CH2O + HCO

No.  Reaction 
61f C2H4 + M →C2H2 + H2 + M 
62f C2H4 + H→C2H3 + H2 
63f C2H4 + OH→C2H3 + H2O 
64f C2H5 →C2H4 + H
65f C2H5 + H→2CH3 
66f C2H5 + O2 →C2H4 + HO2 
67  C2H6 + H→C2H5 + H2 
68  C2H6 + OH→C2H5 + H2O 
69  C2H6 + CH3 →C2H5 + CH4 
70  C3H4 + OH→CH2O + C2H3 
71  C3H4 + OH→HCO + C2H4 
72f C3H5 →C3H4 +H 
73f C3H5 + H→C3H4 + H2 
74f C3H5 + O2 →C3H4 + HO2
75f C3H6 →C2H3 + CH3 
76f C3H6 + H→C3H5 + H2 
77f C3H6 + OH→C2H5 + CH2O 
78f C3H6 + OH→C3H5 + H2O 
79  C3H6 + CH3 →C3H5 + CH4 
80f N-C3H7 →CH3 + C2H4 
81f N-C3H7 →H + C3H6 
82f N-C3H7 + O2 →C3H6 + HO2 
83f   1-C4H8 →C3H5 + CH3
84f   1-C4H8 + OH→N-C3H7 + CH2O 
85    P-C4H9 →C2H5 + C2H4
86    1-C5H11 →C2H4 + N-C3H7 
87    C6H11 →C3H5 + C3H6 
88    1-C6H12 →N-C3H7 + C3H5 
89    1-C6H12 + H→C6H11 + H2 
90    1-C6H12 + OH→C6H11 + H2O

No.   Reaction
91 1-C7H15 →1-C5H11 + C2H4 
92 2-C7H15 →P-C4H9 + C3H6 
93 2-C7H15 →1-C6H12 + CH3 
94 1-C7H15 →2-C7H15 
95 2-C7H15 →1-C7H15 
96 N-C7H16 →P-C4H9 + N-C3H7 
97 N-C7H16 + H→1-C7H15 + H2 
98 N-C7H16 + H→2-C7H15 + H2 
99 N-C7H16 + OH→1-C7H15 + H2O 
100 N-C7H16 + OH→2-C7H15 + H2O 
101 N-C7H16 + HO2 →1-C7H15 + H2O2 
102 N-C7H16 + HO2 →2-C7H15 + H2O2 
103

 

N-C7H16 + O2 →1-C7H15 + HO2 
104 N-C7H16 + O2 →2-C7H15 + HO2
105f 1-C7H15 + O2 →RO2 
105b RO2 →1-C7H15 + O2 
106f

 

2-C7H15 + O2 →RO2 
106b RO2 →2-C7H15 + O2 
107 RO2 →RO'2H 
108 R'O2H + O2 →O2R'O2H 
109   O2R'O2H→HO2R''O2H
110 HO2R''O2H→OR''O2H + OH
111   OR''O2H→OR''O + OH 
112   OR''O→CH2O + 1-C5H11 + CO

+ Selected reverse reactions

Explicit modeling of combustion chemistry and 
kinetics can be extremely complex

†

 

Combustion and Flame, 137, pp 320-329.
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Chemical Context: Parallel reaction pathways  
depend strongly on temperature and species

As T increases, reaction rate rises, falls, and rises again as available 
pathways change.  This creates the Negative Temperature Effect (NTE). 

Low T (700K<T<800K)

Branching chains (higher rate)

Ex: Ketohydroperoxide

 

→ R1*+R2*

Intermediate T (800K<T<900K)

Propagating chains (lower rate)

Ex: *C7

 

H14

 

OOH→C7

 

H14

 

+HO2

 

*

Alkane+HO2

 

*→Alkyl*+H2

 

O2

High

 

T (T>900K)

Branching chains (higher rate)

Ex: H2

 

O2

 

+M→ OH*+OH*+M

radical 
pool

H2

 

O2

 

pool
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However, numerical studies of HCCI mechanisms 
reveal relatively simple global behavior

n-heptane

 

mechanism from previous slide.  Stoichiometric

 

mixture, 8 atm

 

and an 
inert to oxygen mole ratio of 5.  Curve shifts with pressure and

 

dilution, but basic 
features are preserved over wide range of conditions.
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'Low-Order' Modeling of HCCI Dynamics

•

 

Objective: Capture main features of cyclic variation in 
combustion (i.e., HCCI instability associated with cycle-by-

 cycle residual coupling)
•

 

Assumptions:
o

 

Global mass and/or heat balances used to generate mapping 
functions  

o

 

Combustion kinetics approximated as global reaction rates 
that depend on temperature and gas composition at key points 
in the compression and/or combustion strokes

o

 

Iterating map over a range of residual (EGR) reveals regions of 
stability/instability
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Proposed HCCI Mapping Function

•

 

Based on fuel-air mass balance
•

 

z(i) = residual unburned fuel-air returning to cycle i (normalized by 
the fresh air-fuel mass)

•

 

r = fraction of the exhaust being recycled in the EGR
•

 

η1 (i), η2 (i) = fractional conversions of combined fuel-air mixture in 
compression and power strokes in cycle i, respectively 

Additional constraints/assumptions:
•

 

Stoichiometric

 

fueling (equivalent amounts of air and fuel fed)
•

 

Throttle adjusted for constant feed rate for fuel and air as EGR

 

varies
•

 

Combustion split between compression and power strokes
•

 

Compression stroke heating is dominant factor controlling 
temperature at start of power stroke

( ) ( ) ( ))(1)(1)(1)1( 21 iziiriz +−−=+ ηη
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•

 

R =  compression ratio   
•

 

γ

 

=  ratio of constant pressure and constant volume heat capacities
•

 

h1 =  wall heat transfer coefficient
•

 

ΔT =  adiabatic heating from combustion reaction

HCCI Mapping Function Details (1)

•

 

k1 = compression stroke (stage 1) burn rate constant (0-1), fixed for given engine and speed   
•

 

Stage 1 burning proportional to fraction of residual unburned fuel

)(1
)()( 11 iz

izki
+

=η

eam rTTrT +−= )1(
•

 

Ta = air-fuel feed temperature   
•

 

Te = exhaust temperature

( ) ( ) ( ) TriziTThRTiT amm Δ−++−−= − 1)(1)()( 11
1* ηγ

Burn fraction during stage 1:

Mixture temperature at start of stage 1 (prior to compression):

Temperature at beginning of stage 2 (after compression and stage 1 combustion):
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HCCI Mapping Function Details (2)

•

 

t2 =  time interval for power stroke burn (stage 2)   
•

 

τ

 

=  kinetic reaction time scale
•

 

m =  Wiebe

 

profile constant
•

 

Stage 2 burning follows Wiebe

 

reaction profile

•

 

a, b, c, d, e, p, q = constants determined by fitting results from numerical simulations 
of skeletal mechanism at average pressure of power stroke for a range of T*

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−= +1

2
2 /

9.0lnexp1)( mt
i

τ
η

Burn fraction during stage 2:

KT
T
edcTbTaT 1100;)ln( *

*
*2*3* <++++=τ

KTTqp 1100);ln()ln( ** ≥+=τ
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Iterating the HCCI Mapping Function

•

 

Initial residual fuel-air from previous cycle, z(i)
•

 

Compute fractional combustion in stage 1, η1 (i)
•

 

Compute temperature at end of stage 1, T*(i)
•

 

Compute kinetic reaction time scale for stage 2, τ(i)
•

 

Compute fractional combustion in stage 2, η2 (i)
•

 

Compute residual fuel-air to next cycle, z(i+1)

Note:  All parameters except k1 from engine specs, 
engineering correlations, or chemical kinetics.
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HCCI Map Dynamics (1)
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z(i)

r=0.46

0.1 0.2 0.3 0.4 0.5
z(i)

r=0.6

0.1 0.2 0.3 0.4 0.5
z(i)

r=0.7r=0.2

•

 

Solid circles (●) are

 

stable fixed points
•

 

Open circles (○)

 

are unstable fixed points
•

 

Red arrows ( ) indicate tangent bifurcations 
•

 

At r = 0.6, chaos and a stable fixed point co-exist
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HCCI Map Dynamics (2)

Increasing 
EGR

Decreasing 
EGR

Experiments actually measure heat release, HR(i), which is related 
to z(i) by:

[ ][ ])(1)()()()()( 2121 iziiiiiHR +−+= ηηηη
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HCCI Map Dynamics (2)

Experiments actually measure heat release, HR(i), which is related 
to z(i) by:

[ ][ ])(1)()()()()( 2121 iziiiiiHR +−+= ηηηη

Increasing 
EGR

Decreasing 
EGR
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Comparison of HCCI Map with Experiment

For model, dynamic noise added via r = ro + N(0,σ), σ = 0.01.  Reflects 
perturbations from background (e.g., flow turbulence, valve chatter).

Model Experiment

r = ~46%
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Future Work

•

 

Add spark-ignition mechanism for SI-HCCI transition
•

 

Improve approximations for detailed kinetics 
•

 

Systematically explore SI-HCCI transition with experimental engines
o

 

Alternative fuel effects
o

 

Potential control parameters
o

 

Data-derived kinetics
•

 

Develop and test on-line diagnostics and controls

Map from empirical kinetics Experiment
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