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Why We Must Model I
Nature spontaneously organizes
Emergent structures
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Emergent
     structures
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Why We Must Model 2
Engineered systems also spontaneously 
organize

Internet route flapping
Power-law Internet organization
Financial markets crash
Power grids fail spectacularly
Social pattern formation on the web
...

4



Consequence

Each needs its own explanatory (function) basis

Problem:
Emergent structures not given directly by the system 
coordinates or the governing equations of motion
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Why we must Model 3
Fundamental Mathematics: Intrinsic Randomness

Nonlinear dynamical systems [Kolmogorov 1958]:
Chaotic systems: Shannon entropy 

Kolmogorov-Chaitin [1963] complexity of Data:
Size of shortest Turing Machine Program  to 
predict Data

KC complexity = Shannon entropy [Brudno 1978] :

hµ > 0

|Program| ∝ ehµ|Data|
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Exponential Increase in Prediction Resources

Prediction Horizon T

|Compute time| ∝ eT

|Measurements| ∝ eT

Accuracy ∝ e−T
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Consequence
No short cuts!

No closed-form solutions
No computational speed-ups
Must compute full trajectory

Right representation is critical for reducing the 
prediction error as far as possible (but no farther!)
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Past:
Fundamental in Nonlinear Dynamics!

Each nonlinear system requires its own representation

Selecting balance between ascribing structure or 
noise to a measurement depends on representation

Fundamental issue: Theory building

Subsidiary issue:

       Statistical fluctuations due to finite data sample
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Environment

AgentX
AgentY

AgentW

AgentU

AgentV

AgentZ

Future:
Fundamental in Designing Multiagent Systems
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World

Agent

The Feedback Loop

Model Policy

ActionsObservations
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Knowledge + Action

A central challenge:

  Actions change the world

       and so

       its statistics,

       and

       what is knowable.
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Approaches
Modeling:

Statistical inference
Strategizing:

Game theory
Adapting:

Reinforcement learning
Group behavior:

Population dynamics (evolution & ecology)
...
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Approaches: Sticking points
Modeling:

Statistical inference: static, batch mode
Strategizing:

Game theory: equilibria, no transients
Adapting:

Reinforcement learning: a priori design, brittle
Group behavior:

Population dynamics (evolution & ecology): 
individuals have no structure (don’t learn)

Where are the basic principles?
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Interactive Learning
(Susanne Still, Chris Ellison, & JPC)

Problem: Experiment to Learn World Model

The world behaves:

Agent learns model of the world: States

Agent take actions

Those actions affect the world

Now the world is different!

How to close the feedback loop?

arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]

R
past future
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X=

←
X

→
X

A
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Passively Learning a Model
Pattern discovery:

Learn the world’s hidden states

Causal shielding:

Search in the space of models: 

Objective function
min

Pr(R|
←
X)

(
I[
←
X;R] + βI[

←
X;
→
X |R]

)

Info states contain
about histories

Reduce info history
has about future

Model: Map from
histories to states

R ∈M

Pr(
←
X
→
X) = Pr(

←
X |R)Pr(

→
X |R)

Pr(R|
←
X)

β ∼ 1/T
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Passively Learning a Model

Optimal states                    are Gibbs distributions:

where

Pr(R|
←
X)

Propt(R|
←
X) =

Pr(R)

Z(
←
X,β)

e−βE(R,
←
X)

E(R,
←
X) = D

(
Pr(
→
X |

←
X)||Pr(

→
X |R)

)

Pr(
→
X |R) =

1
Pr(R)

∑

←
X

Pr(
→
X |

←
X)Pr(R|

←
X)Pr(

←
X)

Pr(R) =
∑

←
X

Pr(R|
←
X)Pr(

←
X)
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Passively Learning a Model

Solve these equations self-consistently

Parametrized family of models                   :

Structure or Noise?

         trades-off model size against prediction error

Pr(R|
←
X) Rβ

β
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What Do Solutions Mean?
Causal Models

Causal architecture given by   -Machine     :

Optimal predictor:

Minimal size (within optimal predictors     ):

Unique (within min, opt predictors)

ε

JPC & K. Young, Inferring Statistical Complexity, Physical Review Letters 63 (1989) 105-108.
C. R. Shalizi & JPC, Journal Statistical Physics 104 (2001) 817-879.

M

hµ(M) ≤ hµ(R)

R̂

Cµ(M) ≤ Cµ(R̂)
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Theorem: Low-temperature limit

        Recover   -Machine:

 Conclusion: Best causal approximates.

β →∞

ε

Passively Learning a Model

Rβ →M
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Passively Learning a Model

H[Past]

E = I[Past;Future]

Slope = inverse T = Beta

Causal Rate Distortion Curve

I[Past;Rivals]

I[Past;Future|Rivals]
          = E - I[Future;Rivals]

IID limit

!M limit

0
0

R(D)

Distortion

In theory

Optimal balance structure & error
At each level     of approximationβ
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Passively Learning a Model

I[→X 2;←X 5R]

I[← X5 ;R]
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In practice: Learn an oo-state world (SNS: simple nondeterminstic source)

Optimal balance structure & error
At each level     of approximationβ
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Interactive Learning

Decision: Using model, take actions

Policy:                         (or from     ) 

Experimentation objective function

max
Pr(R|

←
X),Pr(A|

←
X)

(
I[{R,A};

→
X]− λI[R;

←
X]− µI[A;

←
X]

)

Pr(A|
←
X) R

Info states contain
about historiesModel: Map from

histories to states

Policy: Map from
histories to actions

Info actions contain
about histories

Info states/actions
contain about futures
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Interactive Learning: Results

Optimal model: Recover causal architecture

Optimal policies

Causally equivalent policies

Curiosity: Take informative actions

Control: Make world easier to model

Balance of exploitation and control

arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]
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Connections

Note iLearning subsumes:

Causal modeling

Game theory

Equilibrium economics

Reinforcement learning
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Knowledge + Action
Deviation from knowledge:

Model evaluation (e.g., prediction error)

Valuation: Commitment of resources to action
Policy evaluation (e.g., average reward)

How? Augment objective function
Change relative weighting of Lagrange multipliers:      &

Add new terms: e.g., ...

Examples:
“Science”: Need accurate knowledge, at expense of producing it

“Politics”: Need world to behave, independent of knowledge or cost

These are positions on causal rate-distortion curve

µλ
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World

Agent

The Feedback Loop

Model Policy

ActionsObservations

Prediction Error
Deviation from knowledge

Valuation
Commitment of resources to actions
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Main message

Closing the loop:

       How interaction changes the world &

       how one adapts to those changes

Theoretical foundations (& algorithms) for 
closing the feedback loop are now available.
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Conclusion
Basic principles follow from

Information theory (rate distortion)

Statistical physics

Balance exploitation & exploration

Balance structure & error

Balance exploitation & control

Challenge: Fold in risk
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Prospects
Collective Cognition:

Pattern discovery

Interactive learning

Adaptation dynamics

Emergent policy design

Multiagent dynamical systems

Environment

AgentX
AgentY

AgentW

AgentU

AgentV

AgentZ
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Thanks!

31


